In this thread on RDBMS-Hadoop integration (Part 1, Part 2, Part 3) I have suggested that we could evaluate integration architecture using three criteria:

  1. How parallel are the pipes to move data between the RDBMS and the parallel file system;
  2. Is there intelligence to push down predicates; and
  3. Is there more intelligence to push down joins and other relational operators?

Let’s consider the Teradata SQL-H implementation using these criteria.

First, Teradata has effective parallel pipes to move data from HDFS to the Teradata database with one pipe per node. There does not seem to be any inter-node IO parallelism. This is a solid feature.

There is a limited ability to push down predicates… SQL-H does allow data to be partitioned on the HDFS side and it will perform partition elimination if the query explicitly calls out a predicate within a partionfilter() keyword. In addition there is an ability to project out columns using a columns() keyword to explicitly specify the columns to be returned. These features are klunky but effective. You would expect partitions to be eliminated when the partitioning column is referenced with a predicate in the query like any other query… and you would expect columns to be projected out if they are not referenced. Normal SQL predicates are applied after the data is moved over the network but before every record is written into the Teradata database.

Finally SQL-H provides no advanced capabilities to push down join operators or other functions.

The bottom line: SQL-H is a sort of klunky implementation, requiring non-ANSI-standard and non-Teradata standard SQL syntax. Predicate push down is limited but better than nothing. As you will see when we review other products, SQL-H is a  basic offering. The lack of full predicate push-down and advanced features will negatively and severely impact performance when accessing large volumes of data, Big Data, and the special SQL syntax will limit the ability to access HDFS data from 3rd party tools. This performance penalty will force customers to pre-join and pre-aggregate data in Hadoop rather than access it naturally.

Next Part 5...

References

Teradata Magazine: Hands On Dynamic Access

Doug Frazier: SQL-H Presentation