Now for HANA plus Hadoop… to continue this thread on RDBMS-Hadoop integration (Part 1, Part 2, Part 3, Part 4, Part 5) I have suggested that we could evaluate integration architecture using three criteria:

  1. How parallel are the pipes to move data between the RDBMS and the parallel file system;
  2. Is there intelligence to push down predicates; and
  3. Is there more intelligence to push down joins and other relational operators?

As a preface I need to include a note/apology. As you will see HANA may well have the best RDBMS-Hadoop integration in the market. I try hard not to blow foam about HANA in this blog… and I hope that the objective criteria I have devised to evaluate all of the products will keep this post credible… but please look at this post harder than most and push back if you think that I overstep.

First… surprisingly, HANA’s first release has only a single pipe to the Hadoop side. This is worrisome but easily fixed. It will negatively impact performance when large tables/files have to be moved up for processing.

But HANA includes Hadoop as a full partner in a federated data architecture using the Smart Data Access (SDA) engine inside the HANA address space. As a result, HANA not only pushes predicates but it uses cost-based optimization to determine what to push down and what to pull up. HANA interrogates the Hadoop system to gather statistics and uses the HANA optimizer to develop smart execution plans with awareness of both the speed of in-memory and the limited memory resources. When data in HANA is joined with data in Hadoop SDA effectively uses semi-joins to minimize the data pulled up.

Finally, HANA can develop execution plans that executes joins in Hadoop. This includes both joins between two Hadoop tables and joins where small in-memory tables are pushed down to execute the joins in Hadoop. The current limitation is that Hadoop files must be defined as Hive tables.

Here is the HANA execution plan for TPC-H query 19. HANA has pushed down all of the steps behind the Remote Row Scan step… so in this case the entire query including a nested loop join was pushed down. In other queries HANA will push only parts of the plan to Hadoop.

TPCH Q19 Plan

So HANA possesses a very sophisticated integration with Hadoop… with capabilities that minimize the amount of data moved based on the cost of the movement. This is where all products need to go. But without parallel pipes this sophisticated capability provides only a moderate advantage (see Part 5),

Note that this is not the ultimate in integration… there is another level… but I’ll leave some ideas for extending integration even further for my final post in the series.

Next… Part 7… considering Greenplum…