Key Values and Key-Value Stores and In-memory Databases

Back to more geeky topics… although my Mom loved the videos…

When very high performance is required to return key performance metrics derived from large volumes of data to a very large number of clients… in other words when volume and velocity are factors and the results are to be delivered to thousands of users (I suppose that I could conjure up a clever V here… but the cleverness would come from the silliness of the semantic stretch… so I’ll leave it to you all to have some pun); the conventional approach has been to pre-compute the results into a set of values that can be fetched by key. In other words, we build a pre-aggregated and pre-joined result table that provides answers to a single query template. Conventionally building this query-specific result table has been the only way to solve these big problems.

Further, we conventionally store these key-value results in a relational DBMS and fetch a row at a time providing pretty darn good performance. Sometimes pretty darn good is not good enough. So there are new options. Key-value data stores may well offer a solution that provides performance and scale at a price well below what has been conventional to date. This is well and good.

But I would like to challenge the conventional thinking a little. The process of joining and aggregating volumes of data into results is a BI process. For the last twenty years BI practitioners have been building pre-aggregated tables and data marts to solve these same problems… maybe not at scale… and this practice has proven to be very expensive, the opposite of agile, and unsustainable. The people costs to develop and support multiple pre-computed replicas is exorbitant. The lack of flexibility that comes from imposing a longish development project over what is essentially an aggregate BI query is constraining our enterprise and our customers.

A better approach is to use the new high performance database products: HANA, BLU, Oracle 12c, or maybe Spark; to aggregate on-demand. Included in this approach is a requirement to use the new high performance database computing platforms available to house the databases.

Consider this… an in-memory DBMS can aggregate 12M rows/sec/core. It can scan 3MB/msec/core. Companies like SGI and HP are ganging processors together so that you can buy a single node that contains 32, 64, or 128 cores… and this number will go up. A 64-core server will aggregate 768M rows/sec and scan 19.2TB/sec… and you can gang a small number of nodes together and scale out.

Providing an extensible BI platform for big data is so much easier than building single-query key-value clusters… there is much less risk… and the agility and TCO make it close to a no-brainer. We just have to re-think the approach we’ve used for 20 years and let the new software and hardware do the work.

Some HANA and Intel Videos

Here are two videos of me speaking from the 2013 Intel Developer Forum FYI.

The first has some technical detail:

The second is more of a PR pitch about Intel Hadoop:

I’m working with Intel on a new video with a pretty interesting storyline (at least I hope that you find it interesting?)… so stay tuned.

Rob

Hadoop Squeezes Greenplum

For several years now I have been suggesting that Hadoop will squeeze the big data RDBMSs: Teradata, Exadata, Greenplum, and Netezza… squeezing them first out of the big data end of the market and then impinging on the high-end of the EDW space. Further I have suggested that there may be a significant and immediate TCO reduction from using Hadoop with your EDW RDBMS which squeezes these product’s market faster and further.

Originally I suggested that Greenplum and Netezza would feel the squeeze first since they were embracing Hadoop directly and at the expense of their RDBMS offerings. Greenplum took this further by trying to compete on price… cutting the price of the GPDB and then introducing HAWQ, basically GPDB on HDFS, at a Hadoop DBMS price point. These moves coupled with a neglect of the EDW market where Greenplum made its name apparently has allowed Hadoop to squeeze Greenplum out of the commercial market.

My network has been humming with rumors from reliable sources for 4+ weeks now… and I am now getting confirmation from both inside and outside Pivotal that the Greenplum software will move to open source in short order. The details are being worked out… and while there may still be a change of heart… it seems to be a done deal. The buzzness plan that Greenplum embarked on prior to the EMC acquisition in 2010 has not been a commercial success.

No one is sorrier to see this than me. Greenplum had a real shot at success. It was a very solid piece of work leading the space with strong architectural extensions like data flow shared nothingness, hybrid row/columnar capabilities, and into big data applications. The ORCA optimizer had the potential to change the game again.

Greenplum was nearly profitable in 2009 running hard at Teradata and Exadata and Netezza in the EDW space. The EDW market is tough… so we have to be fair and point out that pursuing this market may have led to the same result… but a small-market analytics play was followed by an open-source Hadoop play that could only end in squeezing Greenplum. There was never really a business plan with a win at the end.

Hopefully by open sourcing Greenplum some of the sound software will make it into PostgreSQL… but dishing Greenplum into the open source space with few developers and no community dishes it into the same space that Informix, Red Brick, and others sit. I know that I suggested open sourcing Greenplum over 18 months ago (see the wacky idea here)… but the idea then, as now, amounts to capitualization. I just declared what seemed to me to be inevitable a little sooner than Pivotal.

Teradata has now further embraced Hadoop… and they run the risk of repeating the Greenplum downturn. They have a much stronger market platform to work from… but in the long run this may also be a deadly embrace.

So here is another wacky idea. The only successful business model around open source software to date (which is not to say that there is not some other model to be discovered) generates revenue from support and services and just a little software around the edges. Teradata has a support team and a services business that knows big data and is embedded in the enterprise… Cloudera, Hortonworks, and MapR are not close here. Were Teradata to go after the Hadoop market with their own distribution (not much of a barrier to entry here.. just download the Apache stuff and build a team of committers… they might even be able to pick up the Pivotal team)… they would start from a spot way ahead of the start-ups in several respects… in several hard respects. Further they have Aster IP which could qualify as software around the edges. As a Hadoop player Teradata could more easily manage how Hadoop squeezes their business, mitigate risk, and emerge a big winner in the big data space.

Related Database Fog Blog Posts:

More thinking on Specialized Databases

Recently I posted (here) some thinking that suggested that the cost of replicating data into specialized databases might outweigh the benefits of specialization. This post will present a counter view and try to sort out when a specialized database might make sense.

In the ZDNet post here: “Look at What Google and Amazon are doing with Databases: That’s your future” Toby Wolpe and Neo Technology CEO Emil Eifrem suggest that:

“The era of the one-size-fits-all database is over. It used to be when I grew up as a developer that for the architect in the project, when it came to choosing the bottom layer of the stack — the persistence layer — the choice was Microsoft, or IBM, or Oracle, or Sybase. It was a vendor choice.

They were all the same type of database. But that era has gone forever and it will never come back because data is just so big and so irregularly shaped now that you’re always going to be able to get a hundred times improvement, a thousand times improvement, a million times improvement if you get a data technology that is shaped like the shape of your data.”

While I have suggested that a swiss army knife DBMS that solves many problems from a single data source… thereby eliminating the cost and complexity of data replication and data synchronization… might provide a sensible choice for most commercial applications.

Actually I agree with Eifrem and Wolpe in many respects… but there is a difference in our starting assumptions. Let me be clear first about where I strongly agree.

When data volumes grow to web-scale… to Google-scale or Amazon-scale… then the inefficiencies of one-size-fits-all amplify and become intractable… so with a specialized DBMS you might indeed see 100X, 1000X, or more performance advantage and gain a competitive edge from replication and specialization.

But a lot of core data is not Big Data. This is where we do not seem to agree. While our company’s all aspire to have a customer database that is in the petabyte range… it is just not usually the case. Likewise we aspire to have a transaction database requiring petabyte scale… but it just is not the case in most businesses even if you keep years and years of history.

Let’s consider graph databases… Maybe customer data should be in a graph database to specialize it for processing relationships. But this is likely to make it sub-optimal for many other processes… in fact it is the thesis of the ZDNet article that it will make it sub-optimal for many other processes… and so replication to more specialized databases is the only alternative.

How might we handle this relationship problem in a generalized DBMS? HANA, for example, can form graphs in-memory from data shaped into columns… unfolding the graphDB blade from the swiss army knife when required but storing the data in a generalized shape otherwise.

It may be true that there could be orders of magnitude advantage for big data shaped into a specialized graphDB form… But if your customer database is in the terabyte range or less, then the advantage may be negligible… or at least the advantage may not justify the cost of replication into two forms.

And think about the implications of specializing big data. Google replicates tens of petabytes of data into multiple shapes to gain competitive advantage… and ten petabytes specialized and replicated ten times is really really big data.

So I agree with parts of the ZDNet post… big data companies are likely to be pushed by the competition to store the data multiple times in specialized replicated big databases… and for this you will look to Google, Amazon, Netflix, and the like for database technology. But most enterprises will be able to store core data in generalized databases… and will extend into big data realms only as machine-to-machine transactions and/or the Internet of Things drive them there… and then they will extend their data architectures rather than replicate again and again.

A Modern Data Warehouse Architecture: Part 3 – Build an EDW Annex

In the first two post of this series (here and here) I first suggested that Hadoop could be effectively used as the platform for staging and then suggested that a modern warehouse would have a federation layer that turned it into a logical data warehouse. Figure 3 depicts this extended architecture.

Figure 3. A Logical EDW

But if we have both Hadoop and a federation layer implemented… and we recognize the economics associated with moving data to Hadoop… Hadoop provides a 5X-50X price advantage over a commercial very large DBMS product… and we can move data from the expensive environment to the low-cost environment without impacting any applications… then we have the opportunity to move governed EDW data to Hadoop and place it into a Hadoop EDW Annex. Figure 4 shows this.

An EDW Annex

Now you might suggest that there is an impact… Hadoop will be significantly slower than a commercial EDW platform (for now…). But experienced EDW architects understand that in the classic architecture we had to co-locate data in a single database to join the data. So, we put all of the data, hot and cold data, in our EDW even though the service levels required for queries that touch old cold historical data did not justify the power and price of the EDW infrastructure. We had to but did not need to. We knew, if only implicitly, that most EDW queries touch a small subset of the data. Following the ratio suggested by Teradata (see the reference here) that 90% of the queries touch only 20% of the data we can imagine a system where 80% of the data resides in Hadoop to service 10% of the queries… and only that 10% experiences Hadoop performance.

I suggested this approach for Teradata here… but an architecture with an EDW Annex to store cleansed governed historical data works for any expensive RDBMS that can federate with Hadoop: Exadata, Netezza, Teradata, or HANA.

This concludes this series… sort of. I’ll post soon to express more about how this architecture provides long-term strategic value. I think that these three concepts: Hadoop as an EDW staging area, federation and logical data warehousing, and Hadoop as an EDW Annex; provide the foundation for a modern EDW… and I imagine that over the next several years this will become the reference architecture most of us will build to.

Using Teradata’s Appliance for Hadoop to Reduce TCO

Teradata has recently announced a very complete Teradata database-to-Hadoop integration. Is this note we’ll consider how a Teradata shop might effectively use these features to significantly reduce the TCO of any Teradata system.

The Teradata Appliance for Hadoop (here) offering is quite well thought out and complete… including a Teradata appliance, a Hadoop appliance, and the new QueryGrid capability to seamlessly connect the two… so hardware, software, support, and services are all available in very easy-to-consume bundles.
There is little published on the details of the QueryGrid feature… so I cannot evaluate where it stands on the query integration maturity curve (see here)… but it certainly provides a significant advance over the current offering (see here and Dan Graham’s associated comments).
I believe that there is some instant financial gratification to be had by existing Teradata customers from this Hadoop mashup. Let’s consider this…
Before the possibility of a Hadoop annex to Teradata, Teradata customers had no choice but to store cold, old, data in the Teradata database. If, on occasion, you wanted to perform year by year comparisons over ten years of data then you needed to keep ten years of data in the database at a rough cost of $50K/TB (see here) … even if these queries were rarely executed and were not expected to run against a high performance service level requirement. If you wanted to perform some sophisticated predictive analysis against this data it had to be online. If fact, the Teradata mantra… one which I wholeheartedly agree with… suggests that you really should keep the details online forever as the business will almost always find a way to glean value from this history.
This mantra is the basis of what the Hadoop vendors call a data lake. A data warehouse expert would quickly recognize a data lake as a staging area for un-scrubbed detailed data… with the added benefit that a Hadoop-based data lake can store and process data at a $1K/TB price point… and this makes it cost-effective to persist the staged data online forever.
So what does this mean to a Teradata EDW owner? Teradata has published numbers (here) suggesting that 92% of the queries in an EDW only touch 20% of the data. I would suggest that there is some sort of similar ratio that holds for 90% of the remaining queries… they may touch only another 40% of the data. This suggests that the 40% of the data remaining is online to service less than 1% of the queries… and I suggest that these queries can be effectively serviced from the $1K/TB Hadoop annex.
In other words, almost every Teradata shop can immediately benefit from Teradata’s new product announcements by moving 40% of their Teradata database data to Hadoop. Such a move would free Teradata disk space and likely take pressure off to upgrade the cluster. Further, when an upgrade is required, users can reduce the disk footprint of the Teradata database side of the system; add a Hadoop annex, and significantly reduce the TCO of the overall configuration.
Some time back I suggested that Teradata would be squeezed by Hadoop (here and here). To their credit Teradata is going to try and mitigate the squeeze. But the economics remain… and Teradata customers should seriously consider how to leverage the low $/TB of Teradata’s Hadoop offering to reduce costs. Data needs to reside in the lowest cost infrastructure that still provides the required level of service… and the Teradata Hadoop integration provides an opportunity to leverage a new, low-cost, infrastructure.

An Architecture for the IoT – Part 1

There are so many things in the Internet of Things (IoT) that might record data into your data fabric that a new approach may be required. Let’s think about this… define some terms, and see how these terms fit into current data fabric thinking, let’s consider how they fit into a more modern logical data warehouse architecture, and let’s think about whether the IoT might push us to a different approach.

I’m not going to go overboard on terms here… But we do need to distinguish between a sensor and a processor.

To my way of thinking a sensor is a thing. It creates, but does not necessarily process, data. A sensor has some means to communicate with a processor… but if there is no significant processing on the sensor other than communications then we will suggest that there is no “processor” in a meaningful sense. Let me give you four examples:

  • The first is courtesy of Ray Carnes, a chief architect at Boeing. Imagine a brake-pad in your car with 100,000 dust-sized RFID sensors randomly scattered as part of the pad. These sensors do nothing but signal on an interval that they are present. This allows a processor elsewhere to record the signals and determine how much of the brake pad has worn. If only 80,000 sensors report we can assume that 20% of the pad has worn away.
  • A Nest thermostat senses movement and temperature. It uses a network-connect to send the results of this sensing to the Nest mother-ship and performs little-or-no processing on site.
  • Sensors in my Audi detect rotation of the wheels. There is a network that sends the results to a small embedded anti-lock braking processor that monitors all four wheels as well as the pressure on the brake-pedal and sends signals to all five components to allow the car to brake evenly.
  • There is a sensor in the screen on the ATM I used yesterday that detects that I want to request service. This user interface communicates with a powerful general processor which then communicates with the Bank mother-ship to create and process banking transactions.

This last bullet is important… any device that takes user input is a sensor with an embedded processor. It is a “thing” just like the Nest thing. Today we tend to blur the line between sensor and processor as every thing has a powerful processor onboard. The IoT will change this assumption.

A processor then, is a computer that performs some analysis on the data generated by one or more sensors. A processor may also store data… a sensor will not.

Now let’s think about how we might combine sensors and processors in an architecture. To start lets consider the context of the data the processor can use for analysis:

  • If the processor has only the last data sensed we would say that the context is immediate and local to one sensor. The processor can see streamed data but can only operate on the last event. We would say that this sensor-processor configuration can provide a simple reflexive response. When you press the lock button in your car a sensor detects this event and signals to all four doors and the boot to lock it up.
  • Another configuration might allow the local processor to store more context from a single sensor over a longer period of time… so the context is historical and local. In the case of the anti-lock brakes… the processor receives signals from a group of sensors and stores a very short historical context. This grouped historical context is very powerful…
  • Another configuration might store the group context and then forward the event details to a bigger server that stores and analyzes a universal context of all things to look for patterns. Further, there could be a hierarchy of groups leading to a universal context.
  • Finally, a server with some group context could summarize the details for that group and pass on only a summary over time up to another group server or to a universal server.

I suspect that you can see where I’m going. There is a trade-off is this picture between the advantages of pushing analytic processing close to the sensor and the associated requirement for more analytic processors, the advantages of intermediate analysis requiring more data movement but fewer analytic processors, and the advantage of a central analytic mother ship where all data is stored and analyzed. In the next version of this thread I’ll try to tease apart the trade-offs.

Part 8 – How Hadooped is SQL Server PDW with Polybase?

Now for SQL Server… continuing the thread on RDBMS-Hadoop integration (Part 1Part 2, Part 3, Part 4Part 5, Part 6, Part 7) I have suggested that we could evaluate integration architecture using three criteria:

  1. How parallel are the pipes to move data between the RDBMS and the parallel file system;
  2. Is there intelligence to push down predicates; and
  3. Is there more intelligence to push down joins and other relational operators?

Before we start I will suggest a fourth criteria that will be more fully explored later when we consider networks and pipes… that is: how is data sharded/hashed/distributed as it moves from the distribution scheme in HDFS to an optimal, usually hashed, scheme in the target RDBMS. Consider Greenplum as an example… they move data in parallel as quickly as possible to the GPDB and then redistribute the data across GPDB segment nodes using scatter-gather, a very efficient distribution mechanism. We will consider how PDW Poybase manages this as part of our first criteria.

Also note… since I started this series Teradata has come out with a new capability: the QueryGrid. I will add a post to consider this separately… and in this note I will assume the older Teradata capability. This is a little unfair to Teradata and I apologize for that… but otherwise this post becomes too complex. I’ll make things right for Teradata ASAP.

Now on to Microsoft…

First, Polybase has effective parallel pipes to move data from HDFS to the parallel SQL Server instances in PDW. This matches the best capability of other products like Teradata and Greenplum in this category. But where Teradata and Greenplum move data and then redistribute it, pushing the data over a network twice, Poybase has pushed the PDW hash function down to the HDFS node so that data is distributed as it is sent. This very nice feature skips one full move of the data.

Our second criteria considers how smart the connector is in pushing down filters/predicates. Polybase uses a cost-based approach to determine whether is is less expensive to push predicates down or to move all of the data up to the PDW layer. This is a best-in-class capability.

For the 3rd criteria we ask does the architecture push down advanced functions like joins and aggregates… and does the architecture minimize data pulled up to join with semi-joins? Polybase again provides strong capabilities here pushing down joins and aggregates. Polybase does not use semi-joins, so there is room to improve here… but Microsoft clearly has this capability in their roadmap.

One final note… Polybase works with PDW but not with other SQL Server products. This limitation may be relevant in many cases.

PDW + Polybase is a strong offering… matching HANA in most aspects with HANA having a slight edge in push-down with semi-joins but with SQL Server matching this with the most sophisticated parallel data distribution capability.

References

Part 6: How Hadooped is HANA?

Now for HANA plus Hadoop… to continue this thread on RDBMS-Hadoop integration (Part 1, Part 2, Part 3, Part 4, Part 5) I have suggested that we could evaluate integration architecture using three criteria:

  1. How parallel are the pipes to move data between the RDBMS and the parallel file system;
  2. Is there intelligence to push down predicates; and
  3. Is there more intelligence to push down joins and other relational operators?

As a preface I need to include a note/apology. As you will see HANA may well have the best RDBMS-Hadoop integration in the market. I try hard not to blow foam about HANA in this blog… and I hope that the objective criteria I have devised to evaluate all of the products will keep this post credible… but please look at this post harder than most and push back if you think that I overstep.

First… surprisingly, HANA’s first release has only a single pipe to the Hadoop side. This is worrisome but easily fixed. It will negatively impact performance when large tables/files have to be moved up for processing.

But HANA includes Hadoop as a full partner in a federated data architecture using the Smart Data Access (SDA) engine inside the HANA address space. As a result, HANA not only pushes predicates but it uses cost-based optimization to determine what to push down and what to pull up. HANA interrogates the Hadoop system to gather statistics and uses the HANA optimizer to develop smart execution plans with awareness of both the speed of in-memory and the limited memory resources. When data in HANA is joined with data in Hadoop SDA effectively uses semi-joins to minimize the data pulled up.

Finally, HANA can develop execution plans that executes joins in Hadoop. This includes both joins between two Hadoop tables and joins where small in-memory tables are pushed down to execute the joins in Hadoop. The current limitation is that Hadoop files must be defined as Hive tables.

Here is the HANA execution plan for TPC-H query 19. HANA has pushed down all of the steps behind the Remote Row Scan step… so in this case the entire query including a nested loop join was pushed down. In other queries HANA will push only parts of the plan to Hadoop.

TPCH Q19 Plan

So HANA possesses a very sophisticated integration with Hadoop… with capabilities that minimize the amount of data moved based on the cost of the movement. This is where all products need to go. But without parallel pipes this sophisticated capability provides only a moderate advantage (see Part 5),

Note that this is not the ultimate in integration… there is another level… but I’ll leave some ideas for extending integration even further for my final post in the series.

Next… Part 7… considering Greenplum…

Part 1: How Hadooped is Your RDBMS?

Sorry for the comic adjective “Hadooped”?

The next few blogs will try to evaluate the different approaches to integrating Hadoop and a standard RDBMS… so the first thing I’ll try in this post is to suggest a criteria based on some architectural  choices for making the evaluation. Further, I’ll inject a little surprise and make the point by using the criteria to say something about a product that is not an integration of an RDBMS and Hadoop.

For the purposes of this let me clear that by “Hadoop” I mean at least HDFS plus MapReduce… so I will discuss integrating a parallel RDBMS with data stored in HDFS: a massively parallel file system with a programming capability included. By “integration” I mean that queries using the full set of SQL supported by the RDBMS must be available for processing queries that refer to data across the Hadoop-RDBMS divide.

Since we’ve assumed that all SQL functionality is supported the architectural issue left to solve is performance and this issue revolves on one topic: how do we minimize the cost of moving data between the two partners for a given query?

Now to get on with it…

The easiest, but not all that easy, problem involves using parallelism to move data from one system to the other… so the first criteria we will evaluate for each product will consider how parallel is their movement of data.

The next criteria involves intelligence in the RDBMS to push down some execution operators to the data layer. Of course the RDBMS must scan remote data… so in this part of the evaluation we will grade each product’s ability to push processing down to apply predicates and project the minimal amount of data up to the RDBMS.

Finally, a most intelligent product would push more than just predicates down… it would push down joins and aggregation… and the decisions around splitting processing would be fully optimized. A most intelligent product would fully federate the HDFS data into the RDBMS.

So there you have it… I will start evaluating RDBMS-Hadoop architecture by three criteria:

  • how parallel is the data movement between the RDBMS and Hadoop;
  • is there intelligence to minimize data movement by pushing the least data and the associated query plan to one system or another… this requires parallel pipes in both directions; and
  • is there intelligence to build an optimal query plan that splits steps across both systems to completely minimize the movement of data and/or optimize the compute.

And a final word on the relative strength of each criteria:

  • If we imagine a 10-node Hadoop cluster talking to a 10-node RDBMS with 10 parallel pipes and compared it to the same setup with only 1 pipe (not parallel) then we might suggest that the parallel pipes provide a 10X performance increase.
  • If we imagine intelligence that moved 100K rows rather than 10M then we might suggest that intelligent push down might provide a 100X performance increase…
  • If we had even more intelligence and further optimized processing then another 10X-100X might be possible.

So all three criteria are not equal… intelligent query planning trumps wide pipes…

Now for the surprise… in the next blog we’ll look at how Exadata’s architecture maps to these criteria… since it is a two-tiered architecture with an RDBMS tied to a parallel file system…

You can see the rest of the series here: Part 2, Part 3, Part 4, Part 5, Part 6, Part 7, Part 8.