Who Out-performs Who: A Story…

Performance Car Legends
Performance Car Legends (Photo credit: Ginger Me)

In this blog I have stated explicitly and implied now and again that the big architectural features are what count… despite the fact that little features are often what are marketed. Here is a true story to reinforce this theme… and a reminder of the implications… a real-life battle between two vendors: we’ll call them NewVendor and LegacyVendor.

Four years ago, more or less, NewVendor sold a system to offload work from an existing LegacyVendor configuration. Winning the business was tough and the POC was a knife-fight. At that time the two vendors were architecturally similar with no major advantages on either side. In the end NewVendor won a fixed contract that provided 16 nodes and guaranteed to match the performance of LegacyVendor for a specific set of queries. The 16 node configuration was sized based on the uncompressed data in LegacyVendor’s system.

NewVendor sent in a team to migrate the data and the queries… what was expected to be a short project. But after repeated attempts and some outside effort by experts the queries were running 50% slower than the target. I was asked to have a look and could see no glaring mistakes that could account for such a large performance miss… I saw no obvious big tuning opportunities.

After a day or so of investigation I found the problem. LegacyVendor offered a nice dictionary-based compression scheme that shrunk the size of the data by… you guessed it… exactly 50%. Because the NewVendor solution had to read 50% more data with each query they were 50% slower. I recommended that NewVendor needed to supply eight more nodes to hit the performance targets.

In the course of making these recommendations I was screamed at, literally, by one technology executive and told that I was a failure by another. They refused to see the obvious, exact, connection between the performance and the compression. I was quickly replaced by another expert who spent four months on site tuning and tuning. He squeezed every last drop out of the database going so far as to reorder columns in every table to squeeze out gas where data did not align on word boundaries. His expert tuning managed to reduce the gap and in the end NewVendor purchased three fewer nodes than my recommendation. With those nodes they then hit the targets. But the cost of his time and expense (he was a contractor) exceeded the cost of the nodes he saved… and the extra four-month delay antagonized the customer such that the relationship never recovered.

In a world where the basics of query optimization and execution are known to all there are only big-ticket items that differentiate products. When all of the big-ticket, architectural, capabilities are the same the difference between any two mature RDBMS products will rarely be more than 10%-15% across a large set of queries. The big-ticket differentiators today are the application of parallelism, compression and column store, and I/O avoidance (i.e. in-memory techniques). The answer to the question who out-performs who can be found to a close approximation from looking at who is how parallel (here) and who is how columnar (here) and merging the two… with a dose of who best avoids I/O through effective use of memory. This is the first lesson of my story.

The second lesson is… throw hardware at tuning problems when there are no giant architectural mistakes. Even a fat server node costs around $15K… and you will be better off with faster hardware than with a warehouse or mart that is so finely tuned and fragile that the next change to the schema or the data volumes or the workload breaks it.

Epilogue

Soon after this episode NewVendor rolled out a Level 2 columnar feature. This provided them with a distinct advantage over LegacyVendor… an advantage almost exactly equal to their advantage in compression plus the advantage from columnar projection to reduce I/O… and for several years they did not lose a performance battle to LegacyVendor. Today LegacyVendor has a comparable capability and the knife-fight is on again… Architecture counts…

Who is How Columnar? Exadata, Teradata, and HANA – Part 1: Column Compression

Basic Table

There are three forms of columnar-orientation currently deployed by database systems today. Each builds upon the next. The simplest form uses column-orientation to provide better data compression. The next level of maturity stores columnar data in separate structures to support columnar projection. The most mature implementations support a columnar database engine that performs relational algebra on column-oriented data. Let me explain…

Imagine a simple table with 1M rows… with the schema and the first several rows depicted in Figure 1. Conceptually, a row-orientation deploys data on disk and in-memory as depicted in Figure 2 and a column-orientation deploys data on disk and in-memory as depicted in Figure 3. The actual deployment may be significantly different, as we will see.

Note that I am going to throw out some indicative numbers around compression. I will suggest that applying compression to rows will provide from 1.5X to 3.5X compression with and average of 2.5X… and that applying compression to columns provides from 3X compression to 50X compression with the average around 10X. These are supportable numbers but the compression you see for any specific data set will vary.

A row oriented block

There are two powerful compression techniques that individually or combined provide most of the benefits: dictionary-encoding and run-length encoding. For the purposes of this blog I will describe only dictionary-encoding; and I will do an injustice to that by explaining it only briefly and conceptually… just enough that you get the idea.

Five column oriented blocks

Further compression is possible by encoding runs of similar values to a value plus the number of times it repeats so that the bit stream 0000000000000000 could be represented as 01111 (0 occurs 24 times).

You can now also start to see why column-orientation compresses better that a row-orientation. In the row block above there is little opportunity to encode whole rows in a dictionary… the cardinality of rows in a table is too high (note that this may not be true for a dimension table which is, in-effect, a dictionary). There is some opportunity to encode the bit runs in a row… as noted, you can expect to get 2X-2.5X from row compression for a fact table. Column-orientation allows dictionary encoding to be applied effectively to low cardinality columns… and this accounts for the advantage there.

Col Dict

Dictionary-encoding reduces data to a compressed form by building a map that provides a translation for each cardinal value in the table to a tightly compressed form. For example, if there are indeed only three values possible in the DeptID field above then we might build a dictionary for that column as depicted in Figure 4. You can see… by encoding and storing the data in the minimal number of bits required, significant storage reduction is possible… and the lower the cardinality of a column the smaller the resulting bit representation.

Note that there is no free lunch here. There is a cost to be paid in CPU cycles to compress data and to decompress data… but for a read-optimized data warehouse database compression is cool. Exactly how cool depends on the level of maturity and we will get to that as we go.

It is crucial to remember that column store databases are relational. They ingest rows and emit rows and perform relational algebra in-between. So there has to be some magic that turns tuples into columns and restores them from columns. The integrity of a row has to persist. Again I am going to defer on the details and point you at the references below… but imagine that for each row a bit map is built that, for each column, points to the entry in the column dictionary with the proper value.

There is no free lunch to column store… no free lunch anywhere, it seems. Building this bit map on INSERT is very expensive, and modifying it on UPDATE is fairly expensive. This is why column-orientation is not suitable for OLTP workloads without some extra effort. But the cost is amortized by significant performance gains for READs.

One last concept: since peripheral I/O reads blocks imagine two approaches to column compression: one applies the concepts above to an entire table breaking each table into separate column-oriented files that may be read separately; and one which applies the concepts individually to each large block in a table file. Imagine, in the first case that Figure 2 represents a picture of the first few rows in our 1M-row table. Imagine, in the second case, that Figure 2 represents the rows in one block of data re-oriented into columns.

This second, block-oriented, approach is called PAX, and it is more-or-less the approach used by Exadata. In the PAX approach each block contains its own mini-column store and a dictionary for dictionary encoding with the values in the block. Because the cardinality for columns within a block will often be less than for an entire table there are some distinct advantages to PAX compression. Compression will be higher by more than a little than for full table columnar compression.

When Exadata reads a block from disk it decompresses the data back into rows and performs row-oriented processing to complete the query. This is very cool for Exadata… a great feature. As noted, column compression may be 4X better than row compression on the average. This reduces the storage requirements and reduces the overhead of I/O by 4X… and this is a very significant improvement. But Exadata stops here. It is not a columnar-oriented DBMS and it misses the significant advantages that come from the next two levels of column-orientation… I’ll take these up in the next post.

To be clear, all of the databases that use these more mature techniques: Teradata, HANA, Greenplum, Vertica, Paraccel, DB2, and SQL Server gain from columnar compression even if the PAX approach provides some small advantage as a compression technique.

It is also worth noting that Teradata does not gain as much as others in this regard. This is not because of poor design, rather it is due to the fact that, to their credit, Teradata implemented a Teradata-specific dictionary-based compression scheme long ago. Columnar compression let others catch up to what Teradata has offered for years.

And before you ask… Netezza offers no columnar orientation… preferring to compress deeply using an FPGA co-processor to decompress… and to reduce I/O using zone maps rather than the using the mid-level column projection techniques in the next blog here.