What is a Cloud-native Database?

Before this series is complete, I plan on defining in some detail what the various levels of Cloud-nativeness might be to allow readers to classify products based on architecture, not marketing. In this post, I’ll lay out some general concepts. First, let’s be real about cloud-things that are not cloud-native.

Any database that runs on physical hardware can run on virtual machines and, therefore, can run on virtual machines in the cloud. Databases with no cloud capabilities other than the ability to run on a VM on a cloud-provider are not cloud-native. Worse, there are lots of anecdotal stories that suggest that there are no meaningful savings to be had from moving a database from an on-premise server or VM to a cloud VM with no other change to take advantage of cloud elasticity.

So here are two general definitions for your consideration:

1) A cloud-native database will have one or more features that utilize capabilities found only on a cloud-computing platform, and

2) A cloud-native database will demonstrate economic benefits derived from those cloud-specific features.

Note that the way you pay for services via capital expenses (CapEx) or as operating expenses (OpEx) does not provide economic benefit. If the monetary costs of a subscription are more-or-less equal to the financial costs of a license, then savings are tied to tax law, not to economics. Beware of cloudy subscriptions that change how you pay without clearly adding beneficial cloudy features. It is these subscriptions that often are the source of the no-savings anecdotes mentioned above.

This next point is about the separation of storage from compute. Companies have long ago disconnected their databases from just-a-bunch-of-disks (JBOD) to shared storage such as SAN or S3. Any database today can use shared storage. It is not useful to say that any database that can use shared storage has separated storage from compute. Using the idea that there must be features, not marketing, that allow compute to scale separately and more-or-less dynamically from storage as the definition, we will be able to move forward in this area.

So:

3) For storage to be appropriately separated from Compute, it must be possible to scale Compute up and down dynamically.

Next, when compute scales, it scales at different granularity. An application or database that automatically adds and subtracts virtual machines provides different economics than a database that scales using containers. Apps that add and subtract containers have different economics than applications that use so-called serverless containers to scale. In this dimension, we will try to characterize granularity to account for the associated cloud economics. This topic will be covered in more detail later, so I’ll save the rule for that post.

Note that it is possible for database vendors to develop a granular architecture and to use the associated economics to their advantage. They may charge you for the time when any part of your database is running but be billed by their provider for smaller chunks. This is not an issue unless their overall costs become uncompetitive.

Last, and in some ways least, different products may charge for time in smaller or larger chunks. You might be charged by the hour, by the minute, by the second, or in smaller increments. Think about the scaling economics I suggested in the first posts of this thread. If you are charged by the hour, then there is no financial incentive to scale up to finish jobs to the minute. You will be charged the same for ten minutes or fifty minutes when you are charged by the hour. The rule:

4) Cloud databases that charge in smaller time increments are more economical than those that charge in larger increments.

The rationale here is probably obvious, but I’ll cover it in-depth in a later post.

With these concepts in place, we can discuss how architectural changes affect each aspect of the economics of databases in the cloud.

Note that this last sentence was written assuming that a British computer scientist with an erudite accent would speak it when they create the PBS series from these posts. Not.

By the way, a few posts from now, I am going to go back to some ideas I shared five years ago around the relationship between database processing and the underlying hardware platform. I’ll update this thinking with cloud computing in mind. You can find this thinking here which originally came from Jeff Dean and Peter Norvig (displayed in lots of places but here is one).

A Segue from ETL to DB

This is a short post to segue to point where I’ve been headed all along. Figure 1 recasts the picture from the last post, showing storage separated from compute from ETL/ELT to a data warehouse. It should be a familiar picture to Snowflake architects who may have implemented multiple DW instances against a single storage layer.

Decoupled Multi Instance DW
Figure 1. Multiple DW Compute Instances Decoupled from Shared Storage

I’ll not give away the next article, other than to say that it derives from the same concepts just discussed.

Since this is so short, I will add a tangent just-for-fun.

Here is a post from seven years ago that anticipates how the cloud impacts DW performance. When you combine this with the economics presented in the last two posts (here and here), suggesting that performance is free, you can begin to see why database tuning is no longer an urgent requirement for a data warehouse.

When you tune, you specialize for a particular workload, and if your workload changes, the tuning wears thin. In other words, I now believe that you should build a robust data warehouse with minimal tuning and use cloud compute to get performance. No tuning lets you add a new workload without adjusting. Tuning makes your database fragile in the face of change.

More on Cloud Data Elasticity

The last post (here) demonstrated how scalability in the cloud provides the ability to reduce runtimes from days or hours to minutes without raising the cost. We used a batch ETL service running three ETL scripts as an example. We then showed how the same use of scalability could allow us to break the batch ETL service into discrete jobs and remove contention between the three scripts to further improve throughput and reduce costs.

There is a great deal more to say about how the cloud changes our thinking about applying resources to our big data workloads. I promised to get to a discussion of database work, but that will have to wait another week. Sorry. Let’s carry on.

In the scenario where we ran the three jobs together, we assumed that all three ran in the same amount of time and so we shut down the ETL service when all three scripts completed. We shut down the servers when they were all complete to stop billing at the $1152 price point. It is more likely that each script would take more-or-less time than another.

When we run each script in its own set of servers, we can stop billing as each job ends. If one of the jobs takes only 2.5 hours to complete, and your cloud provider will allow you to bill minute, not hour increments, then the cost of that single job drops from $288 to $240. Over a year, these savings add up, and you can ask for a raise.

So, we have added a third point: by using scalability, and by scheduling discrete workloads on dedicated cloud servers, you can scale performance and significantly reduce costs.

You have no doubt noticed that the scenarios describe scalability without any impact on the data. We assume that compute can scale independently of storage, and re-sharding of the data is not required. Every database has special sauce for managing data across storage. All we assume here is that the file scan of data, be they rows or columns, occurs in compute nodes after the data is read from storage. In a future post, we will see how modern storage systems impact this assumption without changing the economics benefits described here. Figure 1 is a classic, really too simple, depiction of this separation.

Simple Storage Separate from Compute
Figure 1. Compute Separate from Storage

The database logic here is straightforward. When compute and storage are tied, the query planner knows precisely and in advance how many parallel nodes are in play, and the system can spread data across those nodes in every step that requires data distribution. The number of nodes is fixed for both storage (processing IO) and compute. Figure 2 shows a system with storage and logic connected.

Couple Storage
Figure 2. Classic Shared-nothing Connected Storage and Compute

In a system with storage and compute separated, the query planner has to ask how many nodes are available for data distribution. I am using the term “database” here, but any parallel data processing system that shards data with a processing plan has some form of this logic.

In the ETL scenarios, data flows from the storage layer into a compute layer dynamically allocated at the start of the workload. The planner learns the configuration when the system starts up.

Shared Nodes
Figure 3. Multi-processing Compute Nodes

Figure 3 depicts the case where all three ETL scripts run together on a six-node cluster. Figure 4 shows each ETL script running on a dedicated cluster. Note that, just-for-fun, I have adjusted the configurations in Figure 4 to show that in the dedicated system case, it is possible to size systems differently if there is an advantage to do so. In a later post, I’ll discuss why this could be important (as right now, it may seem that in every case, you would want 10,000 severs to complete every job in 10 seconds).

Dedicated Compute Nodes
Figure 4. Dedicated Compute Nodes with Separated Storage

A couple of closing remarks. First, I cannot imagine why anyone would not run ETL scripts on a scalable cloud platform. The ability to scale up to reduce runtimes at no extra cost is remarkable (and I’m not sure that I have ever used that word in one of my blogs). Next, I cannot see why anyone who could run ETL in the cloud would not run each script in a dedicated cloudy configuration. If the issue is that your ETL product is not cloud-native does not separate from compute, then get a product that does (or use a cloud database and ELT).

Finally, here is a post from five years ago that anticipates the separation of storage from compute.

Next time: I’ll take this down a notch to talk about workloads smaller than an ETL batch job and consider how to run big data queries in the cloud.

The Rational Economics of In-memory Databases (Is memory getting cheaper faster than Data Warehouses are getting bigger?)

I have just written a commercial blog for work refuting some silliness from Teradata here and here. Since some of this refutes an argument that targets in-memory database architecture in general it is worth restating the case here.

The Teradata argument states that since data warehouses are growing 40% per year and the cost of memory is dropping only 20% per year that the economics of in-memory databases (IMDB) is “irrational” and that the whole IMDB idea is “hype”. Let’s have a look at the Teradata argument…

First, let’s imagine a 100TB data warehouse that is built today… and let’s imagine that it is economically reasonable today. There is an explicit argument for this here and an implicit argument here… but since the Teradata argument says that the IMDB economics get worse over time it really doesn’t matter where we start. If Teradata is right then time will tell.

Now lets apply Teradata’s economics for a couple of years…

Next year, according to Teradata, the data warehouse will have grown to 140TB and the cost of memory will have dropped 20%… making IMDB more economic. The following year your data warehouse will have grown to about 200TB and the cost of memory will have dropped another 20% making the IMDB even more cost-effective. The following year the DW will be 280TB  and the cost of memory will have dropped another 20% making it even more cost-effective.

In other words, the Teradata sound bite is silly. It has emotional appeal… but it is nonsense.

But there is more. Moore’s Law does not say that price will fall 2X every 2 years… it suggests that performance (actually transistor density) will improve 2X every two years. The fact is that memory prices are falling AND memory speeds are improving… and the gap between memory speeds and disk speeds is increasing. So the gap in price/performance of an IMDB vs. a disk-based system is increasing exponentially.

These are the economics that matter… and these are the economics that are driving Teradata to put silicon in-between their disks and their processors.

Teradata’s argument is marketing, not architecture.