The Hype of Big Data

Hype Cycle for Emerging Technologies 2010
Hype Cycle for Emerging Technologies 2010 (Photo credit: marcoderksen)

As preface to this you might check out the definition I suggested for Big Data last week here… – Rob

I left Greenplum in large part because they made their mark in… and then abandoned… the  data warehouse market for a series of big hype plays: first analytics and data science; then analytics, data science, and Hadoop; then they went “all-in”, their words, on Big Data and Hadoop… and now they are part of Pivotal and in a place that no-one can clearly define… sort of PaaS where Greenplum on HDFS is a platform.

It is not that I am a Luddite… I pretend each time I write this blog that I am in tune with the current and future state of the database markets… that I look ahead now and then. I just thought that it was unlikely for Greenplum to be profitable by abandoning the market that made them. At the time I suggested to them an approach that was founded in data warehousing but would let them lead in the hyped plays… and be there in front when, and if, those markets matured.

Now, if we were to define markets in an unambiguous manner:

  • a data warehouse database is primarily accessed through one or more BI tools;
  • an analytic database is primarily accessed through a statistical tool; and
  • Hadoop requires Hadoop;

then I suspect that the vast majority of Greenplum revenues still,  3-4 years after the move away from data warehousing, come from the DW market. It is truly a shame that this is not the focus of their engineering team and their marketeers.

Gartner has called it pretty accurately in their 2013 Hype Cycle for Emerging Technologies here. Check out where Big Data is on the curve and how long until it reaches the mainstream. Worse, here is a drill-down showing the cycle for just Big Data. Look at where Data Science sits and when they expect it to plateau. Look at where SQL for Hadoop is in the cycle.

Big Data is real and upcoming… but there is no concise definition of Big Data… no definition that does not overlap technologies that have been around since before the use of the term. There is no definition that describes a technology that the Fortune 1000 will take mainstream in the next 2-3 years. Further, as I have suggested here and here, open source products like Hadoop will annihilate the commercial market for big analytic databases and squeeze hard the big EDW DBMS players. It is just not a commercially interesting space… and it may not become commercially interesting if open source dominates (unless you are a services company).

Vendors need to be looking hard at Big Data now if they want to play in 2-3 years. They need to be building Big Data integration into their products and they need to be building Big Data apps that take the value straight into the business.

Users need to be looking carefully for opportunities to use Hadoop to reduce costs… and, in highly competitive markets which naturally generate lots of machine-to-machine data, they need to look for opportunities to get ahead of the competition.

But both groups need to understand that they are on the wrong side of the chasm (see here for reference to Crossing the Chasm)… they have to be Early Adopters with a culture that supports an early adopter business model.

We all need to avoid the mistake described in the introduction. We need to find commercially viable spots in an emerging technology play where we can deliver profits and ROI to our organizations. It is not that hard really to see hype coming if you are paying attention… not that hard to be a minor visionary. It is a lot harder to turn hype into profits…

The Big Data Devil

Devil
Devil (Photo credit: Wikipedia)

I just finished a draft for next week on Big Data and thought that with this note I might form a preface…

First… Big Data is about, well…, Big Data. When Gartner devised the three V’s I suspect that they were trying to frame the new stuff that was emerging… not establish a concise definition. So let me be very clear about what I think that Big Data is and is not.

Big Data is about volume, not velocity, not variety. That is what the words “big” and “data” conjoined must mean. Velocity + Volume is Big Data. Variety + Volume is Big Data. By themselves Velocity and Variety are new, important, separate, technological trends.

Next, Big Data is a new thing. It is not a technology that was around in a meaningful way 5+ years ago. It was emerging just then so we should see evidence in the advances offered by the Web Scale companies like Google, Yahoo, and Netflix. It is not any data that was conventionally created, captured, or used before 2010 or so.

So what is new, big, and was emerging in recent history? It is the creation, capture, and use of machine-generated data: click-stream data, system log data, and sensor data. Big Data technology has to do with the creation, capture, and utilization of large volumes of machine-generated data… nothing more or less.

Rob: Big Data legitimately includes Social Data as well as Vitaliy rightfully commented… I’ll post on this soon…

Machines generate data at a very low-level of detail. It is said that the devil is in the detail… and the subject of the next post deals with the notion that in order to make our companies more profitable we must all chase this damnable devil.

PS

I wonder if damnable devil is redundant? Probably, yes.

2nd PS (sort of like 2nd breakfast)

Big Data is not about any and every new technology introduced in the last five years…

Getting started with Hadoop… Enhance Your Data Warehouse Eco-system

Gartner thinks that the Big Data hype is going to die down a little for the lack of progress… (see here) Companies without web-scale, big, data are finding it hard to do anything commercially interesting… still CIO’s sense that Hadoop is going to become important. This post provides a suggestion that might help you to get started.

Hadoop goes here

In most data warehouse eco-systems there is an area, a staging place, where data lands after it is extracted from the source and before it is transformed. Sometimes the staging area and the ETL process are continuous and data flows through the ETL hardware system without seeming to land… but it usually is written somewhere.

The fact is that often enterprises only move data to their data warehouse that will be consumed by a user query. Often users want to see only lightly aggregated data in which case aggregation is part of the ETL process… the raw detail is lost. A great example of this comes from the telecommunications space. Call details may be aggregated into a call record… and often call records are sufficient to support a telco’s business processes.

But sometimes the detail is important. In this case the staging area needs to become a raw data warehouse… a place where piles of data may be stored inexpensively for a time… possibly for a long time.

This is where Hadoop comes in. Hadoop uses inexpensive hardware and very inexpensive software. It can become your staging area and your raw data warehouse with little effort. In subsequent phases, you can build up a library of the jobs that need to look at raw data. You might even start to build up a series of transformations and aggregations that might eventually replace your ETL system.

This is what Sears Holdings is up to (see here).

As I suggested in an earlier post, the economics of Hadoop make it the likely repository for big data. Using Hadoop as the staging area for your data warehouse data might provide a low risk way to get started with Hadoop… with an ROI… preparing your staff for other Hadoop things to come…

 

%d bloggers like this: