What is a Cloud-native Database?

Before this series is complete, I plan on defining in some detail what the various levels of Cloud-nativeness might be to allow readers to classify products based on architecture, not marketing. In this post, I’ll lay out some general concepts. First, let’s be real about cloud-things that are not cloud-native.

Any database that runs on physical hardware can run on virtual machines and, therefore, can run on virtual machines in the cloud. Databases with no cloud capabilities other than the ability to run on a VM on a cloud-provider are not cloud-native. Worse, there are lots of anecdotal stories that suggest that there are no meaningful savings to be had from moving a database from an on-premise server or VM to a cloud VM with no other change to take advantage of cloud elasticity.

So here are two general definitions for your consideration:

1) A cloud-native database will have one or more features that utilize capabilities found only on a cloud-computing platform, and

2) A cloud-native database will demonstrate economic benefits derived from those cloud-specific features.

Note that the way you pay for services via capital expenses (CapEx) or as operating expenses (OpEx) does not provide economic benefit. If the monetary costs of a subscription are more-or-less equal to the financial costs of a license, then savings are tied to tax law, not to economics. Beware of cloudy subscriptions that change how you pay without clearly adding beneficial cloudy features. It is these subscriptions that often are the source of the no-savings anecdotes mentioned above.

This next point is about the separation of storage from compute. Companies have long ago disconnected their databases from just-a-bunch-of-disks (JBOD) to shared storage such as SAN or S3. Any database today can use shared storage. It is not useful to say that any database that can use shared storage has separated storage from compute. Using the idea that there must be features, not marketing, that allow compute to scale separately and more-or-less dynamically from storage as the definition, we will be able to move forward in this area.

So:

3) For storage to be appropriately separated from Compute, it must be possible to scale Compute up and down dynamically.

Next, when compute scales, it scales at different granularity. An application or database that automatically adds and subtracts virtual machines provides different economics than a database that scales using containers. Apps that add and subtract containers have different economics than applications that use so-called serverless containers to scale. In this dimension, we will try to characterize granularity to account for the associated cloud economics. This topic will be covered in more detail later, so I’ll save the rule for that post.

Note that it is possible for database vendors to develop a granular architecture and to use the associated economics to their advantage. They may charge you for the time when any part of your database is running but be billed by their provider for smaller chunks. This is not an issue unless their overall costs become uncompetitive.

Last, and in some ways least, different products may charge for time in smaller or larger chunks. You might be charged by the hour, by the minute, by the second, or in smaller increments. Think about the scaling economics I suggested in the first posts of this thread. If you are charged by the hour, then there is no financial incentive to scale up to finish jobs to the minute. You will be charged the same for ten minutes or fifty minutes when you are charged by the hour. The rule:

4) Cloud databases that charge in smaller time increments are more economical than those that charge in larger increments.

The rationale here is probably obvious, but I’ll cover it in-depth in a later post.

With these concepts in place, we can discuss how architectural changes affect each aspect of the economics of databases in the cloud.

Note that this last sentence was written assuming that a British computer scientist with an erudite accent would speak it when they create the PBS series from these posts. Not.

By the way, a few posts from now, I am going to go back to some ideas I shared five years ago around the relationship between database processing and the underlying hardware platform. I’ll update this thinking with cloud computing in mind. You can find this thinking here which originally came from Jeff Dean and Peter Norvig (displayed in lots of places but here is one).

Database Super-computing

Today I am going to focus on a topic that I’ve suggested previously without the right emphasis: the new database architecture that uses vector processing on compressed columns to significantly accelerate performance.

The term “super-computing” was coined to describe the extreme hardware and software optimization developed to crunch numbers in scientific applications. As these technologies developed super-computer hardware evolved to leverage parallel microcomputers, software evolved to better leverage parallelism. Recently, microcomputers have started to incorporate the specialized instructions that support advanced mathematical applications. These super-computer instructions directly support vector algebra by manipulating strings of bits, vectors, in a single instruction. Finally, application developers recognized that these bit strings, these vectors, could be loaded into the microprocessors in a more effective manner to optimize their applications to the bare metal.

The effect of these optimizations accumulate for these applications as vectors compress and use memory more effectively, vectors load into processor cache more effectively, and vector instructions dramatically outperform integer instructions. The cumulative effect is that super-computer programs may be 10X-100X faster than commercial applications that provide the same result.

As this evolution progressed there was a similar evolution changing the architecture of database technology. Databases actually leveraged microcomputers before the high performance space made the move. But databases focused on the benefits of massively parallel I/O more than on the benefits of parallel compute. The drive to minimize the cost of I/O eventually led database developers to implement column store and then a very interesting discovery was made. Engineers recognized that a highly compressed column, a string of bits, could be processed as a vector.

Let’s see if we can make this 10X-100X number more than marketing foam. We can do this by roughly comparing the low-level processing of a chunk of data in integer and then in vector formats.

Let’s skip I/O processing and just focus on internals. This simplification greatly favors our integer DBMS. Keep in mind that the vector DBMS will process compressed vector data directly while the integer DBMS will expend resources to uncompress data and then take up 4X or more memory. This less efficient memory utilization will increase the chance that an I/O may be required and I/O is very expensive in the scenario we will discuss. Even an I/O on 1% of the time by the integer DBMS will provide a 1000X-100,000X advantage to the vector DBMS (see Figure 8 to gauge the latency to SSD or to disk).

Figure 8. Some Latency Metrics
Figure 8. Some Latency Metrics

So we’ll start with uncompressed integer data versus compressed vector data. We can assume that both databases are effective at populating cache. But the 4X compression advantage means that the vector processor is more likely to find data in the fast Level 1 cache and in the mid-range L2 cache. Given the characteristics outlined in Figure 8 we might suggest that the vector database is 4X more likely of finding data in cache than the integer database and that if we assume the latency of L2 cache as an estimate this results in a 15X-200X performance advantage.

Since data is in a vector form we can perform relational algebra and basic mathematics using vector algebra and vector addition. This provides another 8X-50X boost to the vector side

When we combine these advantages we see that a 10X-100X advantage is conservative. The bottom line is clear. A columnar database that effectively manages vectors into cache and further utilizes super-computing instructions will significantly out-perform an integer-based product.

The era of database super-computing has begun.

CPUs and HW for HANA, BLU, Hekaton, and Oracle 12c

CPUs from retired computers waiting for recycl...
(Photo credit: Wikipedia)

This short post is intended to provide a quick warning regarding in-memory columnar and cpu requirements… with a longer post to follow.

When a row is inserted or bulk-loaded into a DBMS, if there are no indexes, the amount of cpu required is very small. The majority of the time is spent committing a transaction is the time to write a log record to persist the data.

When the same record is reformatted into a column the amount of processing required is significantly higher. The data must be parsed into columns, the values must be compressed, dictionaries may be updated, and the breadcrumbs that let the columnar data be regenerated into rows must be laid. Further, if the columnar structure are to be optimized then the data must be ordered… with a sort or some kind of index structure. I have seen academic papers that suggest that for an insert columnar processing may be 100X more than row processing… and you can see why this could be true (I apologize for not finding the reference… I’ll dig it up… as I recall I read it in a post some time back by Daniel Abadi).

Now let’s think about this… several vendors are suggesting that you can deploy their columnar features with no changes required… no new hardware… in-place. But this does not ring true if the new columnar feature requires 100X extra CPU cycles per row… or 50X… or 10X… unless you are running your database on an empty server.

This claim is a shot at SAP who, more honestly, suggests new hardware with high-end processors for their in-memory columnar product… but methinks it is marketing, not architecture, from these other folks.

Database Computing is Supercomputing… Some external reading: May 2013

Superman: Doomsday & Beyond
Superman: Doomsday & Beyond (Photo credit: Wikipedia)

I would like to recommend to you John Appleby’s post  here on the HANA blog site. While the title suggests the article is about HANA, in fact it is about trends in computing and processors… and very relevant to posts here past, present, and upcoming…

I would also recommend Curt Monash’s site. His notes on Teradata here mirror my observation that a 30%-50% performance boost per release cycle is the target for most commercial databases… and what wins in the general market. This is why the in-memory capabilities offered by HANA and maybe DB2 BLU are so disruptive. These products should offer way more than that… not 1.5X but 100X in some instances.

Finally I recommend “What Every Programmer Should Know About Memory” by Ulrich Drepper here. This paper provides a great foundation for the deep hardware topics to come.

Database computing is becoming a special case, a commercial case, of supercomputing… high-performance computing (HPC) to those less inclined to superlatives. Over the next few years the differentiation between products will increasingly be due to the use of high-performance computing techniques: in-memory techniques, vector processing, massive parallelism, and use of HPC instruction sets.

This may help you to get ready…

The Fog is Getting Thicker…

English: San Francisco in fog
San Francisco in fog (Photo credit: Wikipedia)

I renamed this so that Teradata folks would not get here so often… its not really about Intelligent Memory… just prompted by it. The post on Intelligent Memory is here. – Rob

Two quick comments on Teradata’s recent announcement of Intelligent Memory.

First… very very cool. More on this to come.

Next… life is going to become very hard for my readers and for bloggers in this space. The notion of an in-memory database is becoming rightfully blurred… as is the notion of column store.

Oracle blurs the concepts with words like “database in-memory” and “hybrid column compression” which is neither an in-memory database or a column store.

Teradata blurs the concept with a strong offering that uses DRAM as a block-IO device (like the old RAM-disks we used to configure on our PCs).

Teradata and Greenplum blur the idea of a column store by adding columnar tables over their row store database engines.

I’m not a fan of the double-speak… but the ability of companies to apply the 80/20 rule to stretch their architectures and glue on new advanced technologies is a good thing for consumers.

But it becomes very hard to distinguish the products now.

In future blogs I’ll try to point out differences… but we’ll have to go a little deeper into the Database Fog.

Memory Trends and HANA

If the Gartner estimates here are correct… then DRAM prices will fall 50% per year per year over the next several years… and then in 2015 non-volatile RAM (see the related articles below) will become generally available.

It has been suggested that memory prices will fall slower than data warehouses will grow (see here). That does not seem to be the case… and the combination of cheaper memory and then non-volatile memory will make in-memory databases like SAP HANA ever more compelling. In fact, as I predicted… and to their credit, Teradata is adding more memory (see here).

Related articles

Data Recovery in HANA, TimesTen, and SQLFire

There is a persistent myth, like a persistent cough, that claims that in-memory databases lose data when a hardware failure takes down a node because memory is volatile and non-persistent. This myth is marketing, not architecture.

Most RDBMS products: including Oracle, TimesTen, and HANA; have three layers where data exists: in-memory (think SGA for Oracle), in the log, and on disk. The normal process goes like this:

  1. A write transaction arrives
  2. The transaction is written to the log file and committed… this is a very quick process with 1 sequential I/O… quicker still if the log file is on a SSD device
  3. The query updates the in-memory layer; and
  4. After some time passes, saves the in-memory data to disk.

Recovery for these databases is easy to understand:

  • If a hardware failure occurs and #1 but before #2 the transaction has not been committed and is lost.
  • If a hardware failure occurs after #2 but before #3 the transaction is committed and the database is rebuilt when the node restarts from the log file.
  • If a hardware failure occurs after #3 but before #4 the same process occurs… the database is rebuilt when the node restarts from the log file.
  • If a hardware failure occurs after #4 the database is rebuilt from the disk copy.

SQLFire uses a different approach (from here):

“Unlike traditional distributed databases, SQLFire does not use write-ahead logging for transaction recovery in case the commit fails during replication or redundant updates to one or more members. The most likely failure scenario is one where the member is unhealthy and gets forced out of the distributed system, guaranteeing the consistency of the data. When the failed member comes back online, it automatically recovers the replicated/redundant data set and establishes coherency with the other members. If all copies of some data go down before the commit is issued, then this condition is detected using the group membership system, and the transaction is rolled back automatically on all members.”

Redundant in-memory data optimizes transaction throughput but requires twice the memory. There are options to persist data to disk… but these options provide an approach that is significantly slower than the write-ahead logging used by TimesTen and HANA (and Oracle and Postgres, and …).

The bottom line: IMDBs are designed in the same manner as other, disk-based, DBMSs. They guarantee that comitted data is safe… everytime.

P.S.

See here for how these DBMSs compare when a BI/analytic workload is applied.

A Quick Five Minute Rule Update for In-memory Databases

6/26/2014: I fixed the calculation… I had an error in my spreadsheet. Sorry. The 2012 break-even point is 217 minutes. – Rob

Following on to my blog on the Five Minute Rule and in-memory databases here I decided to quickly and informally recalculate the 4KB break-even point based on current technology (rather than use the 2007 numbers) The results are as follows:

  • A 1TB SATA Disk with 4.2ms average latency and 126MB/s max transfer rate costs $100 here
  • A 4GB DDR3 ECC memory card costs $33 here (I picked fairly expensive ECC memory… I could have gone with the $18 average price mentioned here)
  • Apply the Gray/Putzolu formula: Break Even Interval = (Pages per MB of RAM/Accesses per Second per Disk) * ($ per Disk Drive/$ per MB of RAM)

And we find that today the break-even point for a 4KB block of data is 217 minutes…

Again… this means that for any 4KB block of data… or for any database table where there are 4KB blocks that are touched… within a 3+ hour window it is more cost-effective to keep the data in-memory than to move it back and forth from disk. If the data is compressed the duration increases with the compression so that a table with 2X compression should reside in-memory if accessed on the average every 110 minutes.

Co-processing and Exadata

In my first blog (here) I discussed the implications of using co-processors to offload CPU. The point was that with multi-core processors it made more sense to add generalized processing hardware that could be applied to all parts of the query process than to add specialized processors that dealt with only part of the problem.

Kevin Closson has produced two videos that critically evaluate the architecture of Exadata and I strongly suggest that you view them here before you go on with this post… They are enlightening, irreverent, and make the long post I’ve been drafting on Exadata lightweight and unnecessary.

If you have seen Kevin’s post you understand that Exadata is asymmetric and unbalanced. But his post extends and generalizes my discussion of co-processing in a nice way. Co-processing is asymmetric by definition. The co-processor is not busy after it has executed on its part of the problem.

In fact, Oracle has approximately mirrored the Netezza architecture with Exadata but used commercial processors instead of FPGAs to offload I/O and predicate processing. The result is the same in both cases… underutilized processing capability. The difference is that Netezza wastes some power on relatively inexpensive FPGA processors while Exadata wastes general and expensive CPU resources that might actually be applied usefully elsewhere. And Netezza splits the processing within a shared-nothing architecture while Exadata mixes architectures adding to the inefficiency.

Exalytics vs. HANA: What are they thinking?

I’ve been trying to sort through the noise around Exalytics and see if there are any conclusions to be drawn from the architecture. But this post is more about the noise. The vast majority of the articles I’ve read posted by industry analysts suggest that Exalytics is Oracle‘s answer to SAP‘s HANA. See:

But I do not see it?

Exalytics is a smart cache that holds a redundant copy of aggregated data in memory to offload aggregate queries from your data warehouse or mart. The system is a shared-memory implementation that does not scale out as the size of the aggregates increase. It does scale up by daisy-chaining Exalytics boxes to store more aggregates. It is a read-only system that requires another DBMS as the source of the aggregated data. Exalytics provides a performance boost for Oracle including for Exadata (remember, Exadata performs aggregation in the RAC layer… when RAC is swamped Exalytics can offload some processing).

HANA is a fully functional in-memory shared-nothing columnar DBMS. It does not store a copy of the data.. it stores the data. It can be updated. HANA replaces Oracle… it does not speed it up.

I’ll post more on Exalytics… and on HANA… but there is no Exalytics vs. HANA competition ahead. There will be no Exalytics vs. HANA POCs. They are completely different technologies solving different problems with the only similarity being that they both leverage the decreasing costs of RAM to eliminate the expense of I/O to disk or SSD devices. Don’t let the common phrase “in-memory” confuse you.