A Story about Teradata, Advanced Architectures, and Distributed Applications

Here is a short story about distributed versus monolithic application design…

Around 1999 Dan Holle and I started thinking about how to better deploy applications that used distributed computing. To be fair… Dan schooled me on his ideas for a better approach. We started with a thing called XML that had not yet released a V1 standard. Application subroutines stored state in XML and persisted the XML the best that we could with the tools at the time.

Around 2002 he and I approached Teradata with some very advanced functionality, and some code, that was built on this distributed foundation… and Dan eventually took a job at Teradata to develop this into one or more products.

Unfortunately, the Teradata product management powers could not see the sense. They were building apps the old way and would continue to do so. Dan was caught up in several years worth of battling over the proper architecture and our real intellectual property, the advanced functionality, was lost in the fray. The product management folks insisted that a monolithic architecture was the right way to go and so it went…

This was an odd battle as you might assume that Teradata was a thought-leader in distributed computing…

As you might guess… Dan eventually left Teradata a little bruised by the battle.

Today we realize that a monolithic application architecture is a poor substitute for a distributed architecture. The concepts we brought to Teradata in 2002 underpin the 12 factor app formulation that is the best practice today (see here).

So I’d like to point out that Dan was right… the Teradata Product Management folks were wrong… and that their old school thinking robbed Teradata of the chance to lead in the same manner that they once led in parallel database computing (today they lead in the market… but not in tech). I’d like to point out the lost opportunity. Note that just recently Teradata acquired some new engineering leadership who understand the distributed approach… so they will likely be ok (although the old dweebs are still there).

I hope that this story provides a reason to pause for all companies that depend on software for differentiation. When the silly dweebs, the product managers and the marketeers, are allowed to exercise authority over the very smart folks… and when the executive management team becomes so divorced from technology that they cannot see this… your company is in trouble. When your technology decisions become more about marketing and not about architecture, your tech company is headed for trouble.

PS

This blog is not really about Teradata. I’m just using this story to make the point. Many of the folks who made Greenplum great were diminished and left. The story repeats over and over.

This is a story about how technology has changed from being the result of organic growth in a company to a process whereby the tech leaders become secondary to the dweebs… then they leave… and so companies have to buy new tech from the start-up community. This process forces fundamental technology through a filter devised by venture capitalists… and often fundamental technology is difficult to monetize… or the monetization process fails despite sound underlying tech.

It is a story that points out one of the lessons from Apple, Google, and other serially successful tech companies. Executive leadership has to stay in touch with the smart folks… with the geeks… with the technological possibilities rather than with the technological  “as is”.

Finally, note that Teradata might have asked me to join back up in 2002… and they did not. So not all of their decisions then were mistaken.

A New Way of Thinking About EDW Federation

There is a new way to think about data warehouse architecture. The Gartner Group calls it a logical data warehouse and it uses database federation to dynamically integrate a universe of data warehouses, operational data stores, and data marts into a single, united, structure. This blog has suggested that there is a special case of the logical data warehouse that uses Hadoop to provide a modern data warehouse architecture with significant economic advantages (see here, here, and here).


This is the second post inspired by my chats with Bityota… and sort of, but not altogether, commercial in nature (the first post is here). That is, Bityota will use these posts in their collateral… but you won’t see foam about their products in the narrative below.

– Rob


The economics are driven by the ability, through database federation, to place tables on a less expensive database platform. In short, the aim is to place data on the least expensive platform that still provides enough performance to satisfy service level agreements (SLAs). In the case of the modern data warehouse architecture this means placing older, colder, data on Hadoop where the costs may be $1000/TB instead of having all of the data in a single data warehouse platform at a parallel RDBMS price point of $35,000/TB. Federation allows these two layers to seem as one to any program or end-user.

This approach may be thought of as a data life cycle infrastructure that has significantly more economic power that the hardware based life cycles suggested by database vendors to date. Let’s consider some of the trade-offs that define the hardware approach and the Hadoop-based approach.

The power of Hadoop federation comes from its ability to manage data placement at a macro level. Here, data is placed appropriately into a separate database management system running on differentiated hardware so that the economics of the entire infrastructure: hardware, software, and network can be optimized. It is even possible to add a third or fourth level to provide more fine-grained economic optimization. But this approach come at a cost. Each separate database optimizes queries at the database level. Despite advances in federation software technology this split optimization cannot optimize many queries. The optimization is not poor, but it is not optimal optimization. The global optimization provided by a single DBMS will almost always out-perform federated optimization.

The temperature-based optimization touted by some warehouse vendors provides good global optimization. To date a single DBMS must run on a homogeneous hardware platform with a single price point. Queries run optimally but the optimization can only twiddle around hardware details placing data in memory or on an SSD device or on the faster portion of a disk platter.

Figure 7. Federated Elastic Shared-nothing IaaS
Figure 7. Federated Elastic Shared-nothing IaaS

To eliminate this unfortunate trade-off: good optimization over minor hardware capabilities or fair optimization over the complete hardware eco-system we need a single DBMS that can run queries over a heterogeneous mix of hardware. We need a single database management system, with global query optimization, that can execute queries over multiple layers of hardware deployed in the cloud. We can easily imagine a multi-layered data warehouse with queries federated over several AWS offerings with hotter data on fast nodes that are always available, with warm data on less expensive nodes that are always available, and with cold historical data on inexpensive nodes that come online in processing windows so that you pay for the nodes only when you need them. Figure 7 shows a modern data warehouse deployed across an Amazon cloud.

This different way of thinking about a logical data warehouse is exciting… and a great example of how cloud computing may change everything in the database and data warehouse space.

A Trend in Systems Architecture

I composed the video below on a contract for Intel… but they were kind enough to let me tell the story with only a lite promotional touch. I think that you will find the story interesting as it describes 20+ years of systems architecture and suggests where we may well be headed in the next 5 years…

The bottom line here is that we developed a fully distributed systems architecture over the course of 15 years in order to use the economics of microprocessors. The distributed architecture was required because no micro-based server, and no small cluster of micro-based servers, could manage an enterprise-sized workload. We had to gang micro-processors together to solve the problem. Today we can very nearly solve for an enterprise workload on a small cluster of 32-core or 64-core processors… so distribution may no longer be a driving requirement.

I’ll post a couple of more notes on this video over the next few weeks. There are two possible endings to the video and we’ll explore these future states.

Afterword

About three years ago I started with SAP and early in my second week I was asked to appear before Hasso Platner and Vishal Sikka. In the five minutes before I walked in I was informed that the topic was a book they wanted me to ghost-write for them. I was flabbergasted… I had never written a book.. but so it goes. In the meeting I was told that the topic was “HANA for CIOs” and I was handed a list of forty or fifty key words… topics to be included in the narrative. We agreed that we would meet again to consider content more fully. Despite several requests… that was the last meeting I had on this subject and the project dissolved.

In the month or so before it became clear that there was no real interest in the project I struggled to figure out how to tell a story about HANA that would be compelling… rather than make the book a list of technical features. The story in the video, with the HANA ending that I will post next, was to be the story that opened the book.

How DBMS Vendors Admit to an Architectural Limitation: Part 1 – Oracle Exadata

Database vendors don’t usually admit to shortcomings… they protest that they have no shortcomings until the market suggests otherwise… then they make some sort of change that signals an admission. This post will explore three of these admissions: Oracle and the shared-nothing architecture, DB2 on the mainframe and the shared-nothing architecture, and Teradata and in-memory processing.

For years Oracle verbally thrashed Teradata in the market… proclaiming that the shared-nothing architecture was bunk. But in the data warehousing space Teradata acquired a large chunk of the market; and more importantly, they won more business as the size of the data warehouses grew. The reason for this is two-fold: the shared-nothing architecture lets you deliver more I/O bandwidth to the problem… and once you have read the disk it provides scalability to deliver more compute to process complex queries.

Finally Oracle had enough and they delivered Exadata, a storage engine attached to the conventional Oracle RAC that provided shared-nothing I/O bandwidth to the biggest part of the problem… the full file scan of big fact tables. This was an admission that they had been wrong all along.

Exadata was a tack-on… not a fundamental redevelopment of the Oracle database engine. They used the 80/20 rule to quickly get something to market and stem the trickle of Oracle customers who were out of gas on RAC and headed to shared nothing products: Teradata, Netezza, and Greenplum.

This was a very smart move and it worked. Even though the 80/20 approach meant that there were a significant number of queries, the complex queries that needed to process large working sets to execute joins, Exadata solved enough of the problem to keep devout Oracle shops in the church. Only the shops who felt that complex query performance was important enough to warrant the cost of a migration (for an existing DW that had grown up) or the lesser cost of introducing a new technology (for a new DW) would move.

So, while Exadata was a smart move… it is a clear admission that shared-nothing is the right architecture for data warehouses and marts. This admission makes it clear that it is silly to build a warehouse or mart on normal Oracle or on RAC unless you consider your database an inviolable part of a technological creed.

In my opinion selecting a database is an engineering process that does not require orthodoxy… we should be strong enough engineers to pick the better technology and learn it. Being an “Oracle shop” is lazy.

Note that the in-memory technologies provided in Oracle12c are significant… and for warehouses and marts that will fit on a single node, 12c as it matures, will be a fine choice for the orthodox Oracle shop and for others. For bigger data applications you will require Exadata and the limitations that come with it.

This provides a nice transition to the Part 2 post on Teradata and in-memory.

Related Posts

Database Fog Blog
Other References

MPP, IMDB and Moore’s Law

In the post here I listed the units of parallelism (UoP) applied by various products on a single node. Those findings are summarized in the table below.

Product

Version/HW

Cores per Node

UoP per Node

Notes

Teradata EDW 6700H

16

32

Uses hyper-threads.
Greenplum DCA UAP Edition

16

8

Recommends 1 Segment for each 2 cores. Maybe some multi-threading per query so it could be greater than 8 on the average… and could be 16 with hyper-threads… but not more than 32 for sure.
Exadata X3

12

12-24

Maybe only 12… cannot find if they use hyper-threads.
Netezza Striper

16

16

May use hyper-threads but limited by 16 FPGAs.
HANA Any Xeon E7-4800

40

80

Uses hyper-threads.

A UoP is defined as the maximum number of  instructions that can execute in parallel on a single node for a single query. Note that in the comments there was a lively debate where some readers wanted to count threads or processes or slices that were “active” but in a wait state. Since any program can start threads that wait I do not count these as UoP (later we might devise a new measure named units of waiting that would gauge the inefficiency in any given design by measuring the amount of waiting around required to keep the CPUs fed… maybe the measure would be valuable in measuring the inefficiency of the queue at your doctor’s office or at any government agency).

On some CPUs vendors such as Intel allow two threads to execute instructions in-parallel in a core. This is called hyper-threading and, if implemented, it allows for two UoP on a single core. Rather than constantly qualify the statements for the rest of this blog when I refer to cores I mean to imply hyper-threads.

The lively comments in the blog included some discussion of the sort of techniques used by vendors to try and keep the cores in the CPU on each node fed. It is these techniques that lead to more active I/O streams than cores and more threads than cores.

For several years now Intel and the other CPU manufacturers have been building ever more cores into their products. This has allowed them to continue the trend known as Moore’s Law. Multi-core is now a fact of life and even phones, tablets, and personal computers have multi-core chips.

But if you look at the table  you can see that the database products above, even the newly announced products from Teradata and Netezza, are using CPUs with relatively few cores. The high-end Intel processors have 40 cores and the databases, with the exception of HANA, use Intel products with at most 16 cores. Further, Intel will deliver Ivy Bridge processors to the market this year with 120 cores. These vendors know this… yet they have chosen to deliver appliances with the previous generation CPUs. You might ask why?

I believe that there is an architectural reason for this (also a marketing reason covered here).

It is very hard to keep 80 cores fed with data when you have to perform block I/O. It will be nearly impossible to keep the 240 cores coming with Ivy Bridge fed. One solution is to deploy more nodes in a shared-nothing configuration with fewer cores per node… but this will be expensive requiring more power, floorspace, administration, etc. This is the solution taken by most of the vendors above. Another solution is to solve the problem without I/O with an in-memory database (IMDB) architecture. This is the solution taken by SAP with HANA.

Intel, IBM, and the rest will continue to build out using the multi-core approach for the foreseeable future. IMDB products will be able to fully utilize this product. Other products will struggle to take full advantage as we can see already… they will adapt and adjust and do what they can… but ultimately IMDB will win, I think… because there is just no other way to keep up as Moore’s Law continues to drive technology… no other way to feed the CPU engines with data fast enough.

If I am right then you will see more IMDB offerings from more vendors, including from the major vendors in the near future (note that this does not include the announcements of “database in memory” from Oracle which is not by any measure an in-memory database).

This is the underlying reason why Donald Feinberg (and Timo Elliott) are right on here. Every organization will be running in-memory… and soon.

My 2 Cents: Oracle Exadata 1Q2013

English: The logo of Oracle Corporation de:Bil...
(Photo credit: Wikipedia)

Since my blogs tend to be in response to some stimulus they may not reflect a holistic view on any particular product. The “My 2 Cents” series will try to provide a broader view…

To help pay the bills please consider this as you read on…

Summary

OK, I hate Oracle marketing (see here and here). They are happy to skirt the edge of the credible too often. But let’s be real… Exadata was a very smart move… even if it a flawed product. The flaws are painful but not fatal… and Oracle can now play in the data warehouse space in places they could not play before. I do not believe that Exadata is a strong competitor as you will see below… it will not win many “fair” POCs… but the fight will be more than close enough to make customers with existing Oracle warehouses pick Exadata once they consider the cost of migration. This is tough… it means that customers are locked in to a relatively weak alternative… and every Oracle customer (and every Teradata customer and every SQL Server customer and every DB2 customer) should consider the long-term costs of vendor lock-in. But each customer has to weigh this for themselves… and this evaluation of the cost of lock-in is about neither architecture nor marketing…

Where They Win

First and foremost Exadata wins when there is an existing data warehouse or data mart on Oracle that will have to be migrated. My recommendation to customers is that they think about this carefully before they engage other vendors. It is a waste of everybody’s time to consider alternatives when in the end no alternative has a chance… and it is a double waste to do a POC when even a big technical win by a competitor cannot win them the business.

Exadata can win technically when the data “working set” is small. This allows Exadata to keep the hot data in SSD and in memory and better still, in the RAC layer. This allows Oracle to win POCs where that can suggest a subset of the EDW data is all that is required.

Exadata can win when the queries required, or tested, contain highly selective predicates that can be pushed down in the first steps of the explain plan. Conversely, Exadata bonks when lots of data must be pulled to the RAC layer to perform a join step.

Where They Lose

Everyone who has an Exadata system or who is considering one should view the two videos here. The architectural issues are apparent… and you can then consider the impact for your workload.

As noted above… in an Exadata execution plan the early simple table scans and projection are executed in the storage layer… subsequent steps occur in the RAC layer… if lots of data has to be moved up then the cluster chokes.

There are times when the architectural limitations are just too large and a migration is required to meet the response time requirements for the business. This often happens when Exadata is to support a single application rather than a data warehouse workload… In other words, if the cost of migrating away from Oracle is small, either because the applications to be moved are small or because an automated tool is available to mitigate the cosy or because the migration costs are subsidized by another source, then Exadata can lose even when there is a migration required.

Exadata can be beat on price… unless you count the cost of migration.

In the Market

For the reasons above, Exadata wins for current Oracle customers. There was a honeymoon when Exadata was winning some greenfield deals against other competitors… but these are now more rare.

My Guess at the Future

I think that the basic architecture of Exadata is defensible… having a split configuration is , after all, not completely foreign. Teradata and Greenplum and others use master nodes split from data nodes… and this is where is I predict we’ll see Oracle go. Over time, more execution steps will move to the storage layer and out of the RAC layer and in the end, Exadata will look ever more like a shared-nothing implementation. This just has to be the architectural way forward for Exadata (but don’t expect LE to stand up anytime soon and admit that he was wrong all of these years about the value of a shared-nothing architecture).

Phil has alerted us that there will be some OLTP/BI enhancements coming (see the comments section here)… which stole away a prediction I would have made otherwise.

The bottlenecks pointed out by Kevin Closson (as above and more here) need to be addressed… but to some extent these issues are the result of hardware constraints… and the combination of better hardware configurations and the push-down of more execution steps can mitigate many of the issues.

It will be a while before the Exadata architecture evolves to a point where the product is more competitive… and from now to then I think the World will be as I described it above… Oracle zealots will pick Exadata either as a religious stance or to avoid the cost of a migration… others will mostly go elsewhere…

Coming next… my 2 Cents on Netezza…

Teradata, HANA and NUMA

Teradata is circulating a document to customers that claims that the numbers SAP has published in its 100TB PoC white paper (here) demonstrates that HANA suffers from scaling issues associated with the NUMA-effect. The document is so annoyingly inaccurate that I have to respond.

NUMA stands for non-uniform-memory-access. This describes an architecture whereby each core in a multi-core system has some very fast local memory accessed directly through a memory bus… but has access to every other core’s local memory through a “remote” access hop over another fast bus. In the case of Intel Xeon servers the other fast bus is know as the QPI bus. “Non-uniform” means that all memory access are not equal… a remote access over the QPI bus is slower than access over the memory bus.

The first mistake in the Teradata document is where they refer to the problem as the “SMP Knee Curve”. SMP stands for symmetric multi-processing… an architecture where multiple cores share the same memory bus. The SMP Knee Curve describes the problem when too many cores are contending for the same bus. HANA is not certified to run on an SMP system. The 100TB PoC described above is not run on an SMP system. When describing issues you might expect Teradata to at least associate the issue with the correct hardware architecture.

The NUMA-effect describes problems scaling processors within a single NUMA node. Those issues can impact the ability to continuously add cores as memory locking issues across the QPI bus slow the system. There are ways to mitigate this problem, though (see here for some examples of how to code around the problem).

Of course HANA, which built an in-memory system with NUMA as a target from the start… has built in these NUMA mitigations. In fact, HANA is designed deeper still using special techniques to keep the processor caches filled and to invoke special-purpose SIMD instructions. HANA is built so close to the hardware that processor cycles that are unused due to cache misses but show up as processor busy are avoided (in other words, HANA will get more work done on a 100% CPU busy system than other software that will show 100% CPU busy). But Teradata chose to ignore this deep integration… or they were unaware of these techniques.

Worse still, the problem Teradata calls out… shouts out… is about scaling over 100 nodes in a shared-nothing configuration. The NUMA-effect has nothing at all to do with scale out across nodes. It is an issue within a single node. For Teradata to claim this is silliness at best. It is especially silly since the shared-nothing architecture upon which HANA is built is the same architecture Teradata uses.

The twists Teradata applies to the numbers are equally absurd… but I’ll stop here and hope that the lack of understanding they exhibit in throwing around terms like “SMP Knee Curve” and “NUMA-effect” will cast enough doubt that the rest of their marketing FUD will be suspect. Their document is surely not about architecture… it is weak marketing… you can see more here

SQLFire, Exalytics, TimesTen, and HANA… a quick comparison

Gemfire

As you may have noticed I’m looking at in-memory databases (IMDB) these days… Here are some quick architectural observations on VMWare‘s SQLFire, Oracle’s Exalytics and TimesTen offerings, and SAP HANA.

It is worth noting up front that I am looking to see how these products might be used to build a generalized data mart or a data warehouse… In other words I am not looking to compare them for special case applications. This is important because each of these products has some extremely cool features that allow them to be applied to application-specific purposes with a narrow scope of data and queries… maybe in a later blog I can try to look at some narrow use-cases.

Further, to make this quick blog tractable I am going to assume that the mart/dw problem to be solved requires more data than can fit on one server node… and I am going to ignore features that let queries access data that resides on disk… in-memory or bust.

Finally I will assume that the SQL dialect supported is sufficient and not drill into details there. I will look at architecture not SQL features…

Simply put I am going to look at a three characteristics:

  • Will the architecture support ad hoc queries?
  • Does the architecture support scale-out?
  • Can we say anything with regards to price/performance expectations?

Exalytics is a smart-aggregate store that sits over an Oracle database to offload aggregate query workload (see my previous post here or the Rittman Mead post here which declares: “Oracle Exalytics uses a specially enhanced version of Oracle TimesTen, Oracle’s in-memory database, to cache commonly used aggregates used in dashboards, analyses and other BI objects.” Exalytics does not support a scale-out shared-nothing architecture but it can scale up by adding nodes with new aggregate data. Queries access data within the aggregate structure and it is not possible to join to data off the Exalytics node… so ad hoc is out. Within these limits, which preclude Exalytics from being considered as a general platform for a mart or warehouse, Exalytics provides dictionary-based compression which should provide around 5X compression to reduce the amount of memory required and reduce the amount of hardware required.

TimesTen can do more. It is a general RDBMS. But it was designed for OLTP. I assume that the reason that Oracle has not rolled it out as a general-purpose data mart or data warehouse has to do with constraints that grow from those OLTP architectural roots. For example, BI queries run longer and require more data than a OLTP query… and even with data in-memory temporary storage is required for each query… and memory utilization is a product of the amount of data required and the amount of time the data has to inhabit memory… so BI queries put far more pressure on an in-memory DBMS. There are techniques to mitigate this… but you have to build the techniques in from the ground up.

I imagine that this is why TimesTen works for Exalytics, though. A OLAP query against a pre-aggregated cube does not graze an entire mart or warehouse. It is contained and “small data” (for my wacky take re: Exalytics and Exadata see here).

TimeTen is not sharded… so scalability is an issue. Oracle gets around this nicely by allowing you to partition data across instances and have the application route queries to the appropriate server. But this approach will not support joins across partitions so it severely limits scalability in a general-purpose mart or warehouse.

SQLFire is a very interesting new product built on top of Gemfire… and therefore mature from the start. SQLFire is more scalable than TimesTen/Exalytics. It supports sharded data in a cluster of servers. But SQLFire has the limitation that it cannot join data across shards (they call them partitions… see here) so it will be hard to support ad hoc queries… They provide the ability to replicate tables to support any sort of joins. If, for example, you replicate small dimension tables to coexist with sharded fact tables all joins are supported. This solution is problematic if you have multiple fact tables which must be joined… and replication of data uses more memory… but SQLFire has the foundation in place to become BI-capable over time.

Performance in an in-memory database comes first and foremost from eliminating disk I/O. All three IMDB product provide this capability. Then performance comes from the efficient use of compression. TimeTen incorporates Oracles dictionary-based “columnar” compression (I so hate this term… it is designed to make people think that Oracle products are sort-of columnar… but so far they are not). Then performance comes from columnar projection… the ability to avoid touching all data in a row to process a query. Neither TimesTen nor SQLFire are columnar databases. Then performance comes from parallel execution. Neither TimesTen nor SQLFire can involve all cores on a single query to my knowledge.

Price comes from compression as well. The more highly compressed the data is the less memory required to store it. Further, if data can be used without decompressing it, then less working memory is required. As noted, TimesTen has a compression capability. SQLFire does not appear to compress data. Neither can use compressed data. Note that 2X compression cuts the amout of memory/hardware required in half or more… 4X cuts it to a quarter… and so on. So this is significant.

Now for some transparency… I started the research for this blog, and composed a 1st draft, last Spring while I was at EMC Greenplum. I am now at SAP working with HANA. So… I will not go into HANA at great length… but I will point out that: HANA fully supports a shared-nothing architetcture… so it is fully scalable; HANA is fully parallel and able to use all cores for each query; HANA fully supports columnar tables so it provides deep compression and the ability to use the compressed data in execution. This is not remarkable as HANA was designed from the bottom up to support both BI and OLTP workloads while TimesTen and SQLFire started from a purely OLTP architectural foundation.

References:

vFabric SQLFire User’s Guide

Oracle Times Ten In-Memory Database Architectural Overview

Chaos, Cloud Computing, and the Data Warehouse

 

David Linthicum suggests here that Shadow IT is not all a bad thing. He references a PricewaterhouseCoopers study that suggests that 30% of all IT spending comes from the business directly… from outside of the IT budget.

In the data warehouse space we can confirm these numbers easily. Just google on “data mart consolidation” to see the impact of the business building their own BI infrastructure in order to get around the time-consuming strictures and bureaucratic processes that IT imposes on a classic EDW platform. Readers… think of the term “data governance”… governance implies bureaucracy. And a “single version of the truth” implies a monopoly (governed by IT). We need a market for ideas to support our business intelligence… and a market is a little chaotic.

What we need is a place where IT says to the business… we cannot get you integrated into our formal EDW infrastructure as fast as you would like… but don’t go and build your own warehouse/mart on your own shadow platform. Let us provide you with a mart in the cloud. Take the data you need from our EDW. Enhance it as you see fit. We can spin up a server to house the mart in the cloud in a couple of hours. Let us help you. Use the tools you want… we think that it is cool that you are going to try out some new stuff… but if you want to use the tools we provide then you’ll get the benefit of our licensing deal and the benefit of our support… but you decide. We need IT to allow a little chaos…

This, I believe is what cloud offers to the data warehouse space…. the platform to respond.

But there is a rub… data warehouse appliances from Teradata, Exadata, and Netezza require bundled hardware that is not going to fit in your cloud. A shared-nothing architecture is a tough fit into the shared disk paradigm of the cloud (see here). The I/O reliance of a disk-based DBMS make performance tough on a shared disk platform. I think that for data marts and analytic sandboxes the cloud is the right choice… if you want to minimize the size of the shadow IT cast by lines of business. An in-memory database (IMDB): HANA, TimesTen, or SQLFire may be the best alternative for a small cloud-based mart.

David Linthicum has it right in spades for the data warehouse space… we need some user pull-through… and we need cloud computing as the platform to make these user-driven initiatives manageable.

 

HANA and ABAP

 

One more surprise…

In the past SAP applications have, in general, avoided using database features. Even a SELECT with a projection was out-of-bounds. They did not want to depend on any database, so they tended to pull all data from the data layer to the application layer and loop through the data using procedural languages like ABAP. You might say that they were religiously database agnostic. My mistake… you might say that we were religiously database agnostic. I have to get used to these new surroundings.

Besides the obvious attributes of HANA: in-memory, shared-nothing, MPP, and column-oriented… the aim is to move the application logic next to the data and into HANA.

Any of you who have labored to convert procedural code into set-based SQL will understand the issue here. There are hundreds of thousands or millions of lines of procedural code… often very simple loops… that have to be converted to SQL to make the HANA architecture support the SAP application portfolio.

The surprise is not that there is this outstanding issue.. nor is it the ambitious architecture designed to push the application deep into the database (we are not talking about SQL-based stored procedures… we are talking about the application). The surprise is that the HANA development team has built a state-of-the-art facility that programmatically converts procedural logic into its set-based equivalent (not necessarily into SQL but sometimes into a language that can execute in-parallel). This is not a tool requiring manual intervention… it is an automatic, mathematically provable, transformation.

Right now the technique is used to covert logic in stored-procedures and in ABAP. But I hope to see it applied in the optimizer to convert those ugly Oracle cursor loops on-the-fly.

You can read more here.

By the way… SAP will continue to support ABAP using the database as a file server… moving all of the data from the database server to the application server for processing. But you can imagine that… when running applications that use this powerful capability… over time HANA will emerge with a huge performance advantage over other databases…

Oracle should be worried.