Numbers Every Database Professional Should Know

Latency Estimates in a Processor

In this post I will setup the next post by reminding you of these numbers every programmer should know. The picture shows the latency to access data across the three levels of cache in a modern processor, and across the memory bus to DRAM, and then across to an SSD or spinning disk drive. 

These numbers are the key to in-memory database performance. L1 cache is expensive and small. All data and all instructions are fed to the core through the L1 cache and typically the instruction and the data it will operate on are each fetched independently. If the data (or instruction… but I will just talk about the data from here on out) is not found in the small L1 cache the L2 cache is searched. Likewise, if the data is not in the L2 cache the L3 cache is searched and then DRAM. As you can see there is a 200X performance difference between a fetch from L1 cache and a fetch from DRAM. If the data must be fetched from SSD or disk, there is a 1000X penalty. 

Databases work to mitigate the 1000X penalty by pre-fetching data into DRAM. Modern processors mitigate the penalty between cache and DRAM by trying to anticipate the data required and pre-fetching it into L3 cache. This is a gamble and the likelihood of winning the pre-fetch bet varies with your DBMS and with the workload. More simultaneous queries against many tables puts pressure on the memory and lessens the effectiveness of data pre-fetch. 

Databases also mitigate the 1000X penalty by compressing data so that each fetch of a block from disk captures more data. For tabular (not columnar) data each block must be decompressed before it can be used. Decompression steals CPU cycles from query processing but mitigates some of the cost of I/O to disk. Columnar databases fetch compressed data and, if the databases use modern vector processing techniques, they operate directly on the compressed vector data without decompression. This is especially powerful as these vectorized columnar databases can push compressed data into cache and use that memory more effectively. 

Vectorized data can use the supercomputing instruction set that includes SIMD instructions. SIMD stands for Single Instruction; Multiple Data and these instructions fetch a single instruction from L1 cache and reuse it on the vectorized data over and over with pausing to fetch new instructions. Note that in a modern processor waiting for instructions or data to be fetched from cache or DRAM appears as CPU busy time. When the processor is stalled waiting for data to be fetched from disk the query/job gives up the CPU and dispatches a new query/job. 

Finally, for the longer-running queries associated with analytics and business intelligence (where long-running means a few seconds or more… “long” in CPU instruction time), it is highly likely that the L1 and L2 cache in each core will be flushed and new data will be fetched. It is even likely that all the data in L3 cache will be flushed. In this case most of the goodness associated with compression and vectorization is flushed with it. The vectors must be fetched again from L3 and DRAM. Further, note that when you run in a virtual machine or in the cloud you may think that you are the only user but other virtual machines other containers, or other serverless processes may be flushing you out of memory all the time. 

This is important. Until we swapped out a query for a new one it looked like in-memory vector processing might be 200X-1000X faster than a tabular query; but in an environment where tens or hundreds of queries are running concurrently the pressure on memory keeps flushing the cache and the advantage of vectorized query processing is reduced. Reduced, not eliminated. We would still expect the advantages of compressed data in cache and SIMD supercomputing instructions to provide much more than a 10X speedup. 

As mentioned, this post is a detailed review of material I covered years ago when HANA was introduced. In the next post I will add some new thinking. 

Here is more information on processor architecture and cache usage.

DW Cloud Economics – The Model

This post describe the model used to generate the content from the DW Cloud Economics – A Do Over post incase you want to check the numbers…

First, keep in mind that the numbers in this model are relative and indicative, not absolute. Here are the fixed parameters I used to generate these indicative numbers:

Cost per server per hour: $4.00 This could be any number or any currency and it would not matter.

Runtime per job with no contention: 3 hours This could be any duration and it would not change the relative results. If the number was well below an hour, it would increase the hour-based billing costs.

Jobs per Workload: 6 Again any number works.

Baseline Configuration: 24 Servers

Contention between 6 jobs on 24 Servers: 50% This sets the average amount of time a job will wait for resources. So, a job that runs for 3 hours with no contention will run in 4.5 hours with 50% contention. As the number of servers goes up the contention comes down for a fixed workload.

Baseline Performance: 2000 A completely arbitrary number that allows the model to calculate a relative price/performance. Relative “Performance” is calculated by dividing the Baseline Performance by the actual runtime. This means that a workload that takes 5 hours will yield a performance of 400 and a workload that take 2 hours will yield a performance number of 1000.

There are also a series of calculated values:

Total Servers / Workload is equal to Servers/Job for the Multi-tasking and Serial Execution configurations. It is equal to Servers/Job * Number of Jobs for the dedicated server per job configuration.

Scaleup is the ratio between the number of Total Servers / Workload and the Baseline Configuration. It is used to scale down the runtime and the contention.

Runtime / Job is the number of hours per job with no contention scaled down based on the Scaleup plus the time the Job is waiting due to contention. Contention scales down as the number of servers scales up.

Actual Runtime / Workload is Runtime / Job plus contention. Note that in the Serial Configuration and the Dedicated Server configuration there is no contention.

Paid Runtime / Workload is the Actual Runtime / Workload rounded to the nearest hour for the hourly billing table and equal to the Actual Runtime / Workload for the billing per minute table.

Cost / Workload is the Cost per Server per Hour parameter times the Paid Runtime / Hour value times the Total Servers / Workload value.

Price / Performance is the Cost / Workload divided by the Actual Runtime / Workload times the Baseline Performance parameter divided by the Cost / Workload value as noted above.

DB Cloud Economics – A Do Over

Here is a better model that demonstrates how cloudy databases can provide dramatic performance increases without increasing costs.

Mea culpa… I was going to extend the year-old series of posts on the economics of cloud computing and recognized that I poorly described the simple model I used, and worse, made some mistakes in the model. It was very lame. I’m so sorry… That said, I hope that you will like the extension to the model and the new conclusions.

I’ll get to those conclusions in a few short paragraphs and add a new post to explain the model.

If we imagine a workload consisting of 6 “jobs” that would execute on a dedicated cluster of 24 servers in 3 hours each with no contention, we can build a simple model to determine the price performance of the workload for three different configurations:

  1. M1: The usual configuration where all six jobs run together and share the configuration, multitasking and contending for the resources. As the configuration scales up the cost goes up, the runtime goes down, and the contention drops.
  2. M2: A silly model where each job runs serially on the configuration with no contention. As the configuration scales up the costs go up, the runtime goes down.
  3. M3: A model where each job runs independently, simultaneously, on its own cluster with no contention.

If we pay for servers by the hour the model shows that there is an opportunity to deploy many more servers, as many as one per “job”, to reduce the runtime and the cost. Here are the results:

ConfigServers DeployedActual Runtime / Workload (Hours)Paid Runtime / Workload
(Hours)
Cost / WorkloadPrice / Performance
Multitasking244.55$480444
 483.84$768533
 963.44$1,536593
Serial Execution2418.018$1,728111
 489.09$1,728222
 964.54.5$1,920444
Dedicated Server per Job1440.51$5764000
 2880.31$1,1528000
 5760.11$2,30416000
Table 1. Costs with Hourly Billing

Note that the price/performance metric is relative across the models. You can see the dramatic performance and price/performance increases using a configuration where each unit of work gets a dedicated set of resources. But the more dramatic picture is exposed in Table 2.

ConfigurationServers DeployedActual Runtime / Workload (Hours)Paid Runtime / Workload (Hours)Cost / WorkloadPrice / Performance
Multitasking244.54.5$432444
 483.83.8$720533
 963.43.4$1,296593
Serial Execution2418.018.0$1,728111
 489.099.0$1,728222
 964.54.5$1,728444
Dedicated Server per Job1440.50.5$2884000
 2880.30.3$2888000
 5760.10.1$28816000
Table 2. Costs with per Minute Billing

Here the granular billing reduces the total cost with the same dramatic price and price/performance increases. This was the point I was trying to make in my earlier posts. Note that this point, that fine-grained billing can be used to significantly reduce costs, is why deploying work in containers, or better still as serverless transactions, is so cost-effective. It is why deploying virtual machines in the cloud misses the real cost savings. In other words, it is why building cloud-native implementations is so important and why cloud-native databases will quickly overcome databases that cannot get there.

I also was trying to show that work deployed across these configurations, what I call a “job”, can be ETL jobs or single queries or a set of queries or a Spark job. If you have lots of smaller work, it may be best to run them in a multitasking configuration to avoid the cost of tearing down and starting up new configurations. But even here there is a point where the tear down cost can be mitigated across multiple semi-dedicated configurations.

A Short DW DBMS Market History: HANA, Oracle, DB2, Netezza, Teradata, & Greenplum

Here is a quick review of tens years of data warehouse database competition… and a peek ahead…

Maybe ten years ago Netezza shook up the DW DBMS market with a parallel database machine that could compete with Teradata.

About six years ago Greenplum entered the market with a commodity-based product that was competitive… and then added column store to make it a price/performance winner.

A couple of years later Oracle entered with Exadata… a product competitive enough to keep the Oracle faithful on an Oracle product… but nothing really special otherwise.

Teradata eventually added a columnar feature that matched Greenplum… and Greenplum focussed away from the data warehouse space. Netezza could not match the power of columnar and could not get there so they fell away.

At this point Teradata was more-or-less back on top… although Greenplum and the other chipped away based on price. In addition, Hadoop entered the market and ate away at Teradata’s dominance in the Big Data space. The impact of Hadoop is well documented in this blog.

Three-to-four years ago SAP introduced HANA and the whole market gasped. HANA was delivering 1000X performance using columnar formats, memory to eliminate I/O, and bare-metal techniques that effectively loaded data into the processor in full cache lines.

Unfortunately, SAP did not take advantage of their significant lead in the general database markets. They focussed on their large installed base of customers… pricing HANA in a way that generated revenue but did not allow for much growth in market share. Maybe this was smart… maybe not… I was not privy to the debate.

Now Oracle has responded with in-memory columnar capability and IBM has introduced BLU. We might argue over which implementation is best… but clearly whatever lead SAP HANA held is greatly diminished. Further, HANA pricing makes it a very tough sell outside of its implementation inside the SAP Business Suite.

Teradata has provided a memory-based cache under its columnar capabilities… but this is not at the same level of sophistication as the HANA, 12c, BLU technologies which compute directly against compressed columnar data.

Hadoop is catching up slowly and we should expect that barring some giant advance from the commercial space that they will reach parity in the next 5 years or so (the will claim parity sooner… but if we require all of the capabilities offered to be present there is just no way to produce mature software any faster than 5 years).

Interestingly there is one player who seems to be advancing the state of the art. Greenplum has rolled out a best-in-class optimizer with Orca… and now has acquired Quickstep which may provide the state-of-the-art in bare metal columnar computing. When these come together Greenplum could once again bounce to the top of the performance, and the price/performance, stack. In addition, Greenplum has skinnied down and is running on an open source business model. They are very Hadoop-friendly.

It will be interesting to see if this open-source business model provides the revenue to drive advanced development… there is not really a “community” behind Greenplum development. It will also be interesting to see if the skinny business model will allow for the deployment of an enterprise-level sales force… but it just might. If Pivotal combines this new technology with a focus on the large EDW market… they may become a bigger player.

Note that was sort of dumb-luck that I posted about how Hadoop might impact revenues of big database players like Teradata right before Teradata posted a loss… but do not over think this and jump to the conclusion that Teradata is dying. They are the leader in their large space. They have great technology and they more-or-less keep up with the competition. But skinnier companies can afford to charge less and Teradata, who grew up in the days of big enterprise software, will have to skinny down like Greenplum. It will be much harder for Teradata than it was for Greenplum… and both companies will struggle with profitability for a while. But it is these technology and market dynamics that give us all something to think about, blog about, and talk about over beers…

Hadoop and Company Financial Performance

I have posted several times about the impact of the Hadoop eco-system on a several companies (here, here, here, for example). The topic cam up in a tweet thread a few weeks back… which prompts this quick note.

Fours years ago the street price for a scalable, parallel, enterprise data warehouse platform was $US25K-$US35K per terabyte. This price point provided vendors like Teradata, Netezza, and Greenplum reasonable, lucrative, margins. Hadoop entered the scene and captured the Big Data space from these vendors by offering 20X slower performance at 1/20th the price: $US1K-$US5K per terabyte. The capture was immediate and real… customers who were selecting these products for specialized, very large, 1PB and up deployments switched to Hadoop as fast as possible.

Now, two trends continue to eat at the market share of parallel database products.

First, relational implementations on HDFS continue to improve in performance and they are now 4X-10X slower than the best parallel databases at 1/10th-1/20th the street price. This puts pressure on prices and on margins for these relational vendors and this pressure is felt.

In order to keep their installed base of customers in the fold these vendors have built ever more sophisticated integration between their relational products and Hadoop. This integration, however, allows customers to significantly reduce expense by moving large parts of their EDW to an Annex (see here)… and this trend has started. We might argue whether an EDW Annex should store the coldest 80% or the coldest 20% of the data in your EDW… but there is little doubt that some older data could satisfy SLAs by delivering 4X-10X slower performance.

In addition, these trends converge. If you can only put 20% of your old, cold data in an Annex that is 10X slower than your EDW platform then you might put 50% of your data into an Annex that is only 4X slower. As the Hadoop relational implementations continue to add columnar, in-memory, and other accelerators… ever more data could move to a Hadoop-based EDW Annex.

I’ll leave it to the gamblers who read this to guess the timing and magnitude of the impact of Hadoop on the relational database markets and on company financial performance. I cannot see how it cannot have an impact.

Well, actually I can see one way out. If the requirement for hot data that requires high performance accelerates faster than the high performance advances of Hadoop then the parallel RDBMS folks will hold their own or advance. Maybe the Internet of Things helps here…. but I doubt it.

A New Way of Thinking About EDW Federation

There is a new way to think about data warehouse architecture. The Gartner Group calls it a logical data warehouse and it uses database federation to dynamically integrate a universe of data warehouses, operational data stores, and data marts into a single, united, structure. This blog has suggested that there is a special case of the logical data warehouse that uses Hadoop to provide a modern data warehouse architecture with significant economic advantages (see here, here, and here).


This is the second post inspired by my chats with Bityota… and sort of, but not altogether, commercial in nature (the first post is here). That is, Bityota will use these posts in their collateral… but you won’t see foam about their products in the narrative below.

– Rob


The economics are driven by the ability, through database federation, to place tables on a less expensive database platform. In short, the aim is to place data on the least expensive platform that still provides enough performance to satisfy service level agreements (SLAs). In the case of the modern data warehouse architecture this means placing older, colder, data on Hadoop where the costs may be $1000/TB instead of having all of the data in a single data warehouse platform at a parallel RDBMS price point of $35,000/TB. Federation allows these two layers to seem as one to any program or end-user.

This approach may be thought of as a data life cycle infrastructure that has significantly more economic power that the hardware based life cycles suggested by database vendors to date. Let’s consider some of the trade-offs that define the hardware approach and the Hadoop-based approach.

The power of Hadoop federation comes from its ability to manage data placement at a macro level. Here, data is placed appropriately into a separate database management system running on differentiated hardware so that the economics of the entire infrastructure: hardware, software, and network can be optimized. It is even possible to add a third or fourth level to provide more fine-grained economic optimization. But this approach come at a cost. Each separate database optimizes queries at the database level. Despite advances in federation software technology this split optimization cannot optimize many queries. The optimization is not poor, but it is not optimal optimization. The global optimization provided by a single DBMS will almost always out-perform federated optimization.

The temperature-based optimization touted by some warehouse vendors provides good global optimization. To date a single DBMS must run on a homogeneous hardware platform with a single price point. Queries run optimally but the optimization can only twiddle around hardware details placing data in memory or on an SSD device or on the faster portion of a disk platter.

Figure 7. Federated Elastic Shared-nothing IaaS
Figure 7. Federated Elastic Shared-nothing IaaS

To eliminate this unfortunate trade-off: good optimization over minor hardware capabilities or fair optimization over the complete hardware eco-system we need a single DBMS that can run queries over a heterogeneous mix of hardware. We need a single database management system, with global query optimization, that can execute queries over multiple layers of hardware deployed in the cloud. We can easily imagine a multi-layered data warehouse with queries federated over several AWS offerings with hotter data on fast nodes that are always available, with warm data on less expensive nodes that are always available, and with cold historical data on inexpensive nodes that come online in processing windows so that you pay for the nodes only when you need them. Figure 7 shows a modern data warehouse deployed across an Amazon cloud.

This different way of thinking about a logical data warehouse is exciting… and a great example of how cloud computing may change everything in the database and data warehouse space.

How DBMS Vendors Admit to an Architectural Limitation: Part 3 – EDW on IBM z/OS

This is the 3rd and final example of a vendor admitting, without admitting, to an architectural limitation. The first two parts on Exadata and Teradata are here and here.

Teradata started to get real traction in the EDW space with a shared-nothing architecture in the late 1980’s. At that time the only real competition was DB2 on an IBM mainframe. From those days until just a couple of years ago IBM insisted that for MVS, then z/OS, customers should stick to the mainframe for their data warehouses and marts. There was some dabbling with sharded data in DB2 for z/OS… and Teradata made some in-roads… as did Netezza… but IBM insisted that there was no reason not to stay Blue. DB2 on AIX and then LINUX appeared… and both offered a better price/performance option than DB2 ob Z/OS… but the faithful stayed faithful for the most part.

Then IBM bought Netezza, a pure shared-nothing microprocessor-based machine, and the recommendation changed. Today IBM recommends the Analytics Accelerator, based on Netezza, to mainframe users who want to deploy an EDW. This is an admission, with no admission at all, that there was all along an architectural advantage to shared-nothingness.

If you search this blog for “Netezza” you can get my perspective on that technology. But to be blunt, the Analytics Accelerator is not IBM’s best EDW platform… DB2 LUW is by far… and with BLU LUW is better still.

I have made it clear in my previous posts that I consider it lazy for an IT shop to commit to a vendor or to a product. As engineers we need to embrace change. For IBM z/OS shops this means a realistic look at non-z/OS alternatives to deploy or to re-deploy an EDW. It makes no sense to build a data warehouse or a data mart directly on z/OS. Use the Analytics Accelerator or, better still, open the competition to better products like DB2 LUW, Teradata, Vertica, etc.

References

Database Fog Blog

Other

A Trend in Systems Architecture

I composed the video below on a contract for Intel… but they were kind enough to let me tell the story with only a lite promotional touch. I think that you will find the story interesting as it describes 20+ years of systems architecture and suggests where we may well be headed in the next 5 years…

The bottom line here is that we developed a fully distributed systems architecture over the course of 15 years in order to use the economics of microprocessors. The distributed architecture was required because no micro-based server, and no small cluster of micro-based servers, could manage an enterprise-sized workload. We had to gang micro-processors together to solve the problem. Today we can very nearly solve for an enterprise workload on a small cluster of 32-core or 64-core processors… so distribution may no longer be a driving requirement.

I’ll post a couple of more notes on this video over the next few weeks. There are two possible endings to the video and we’ll explore these future states.

Afterword

About three years ago I started with SAP and early in my second week I was asked to appear before Hasso Platner and Vishal Sikka. In the five minutes before I walked in I was informed that the topic was a book they wanted me to ghost-write for them. I was flabbergasted… I had never written a book.. but so it goes. In the meeting I was told that the topic was “HANA for CIOs” and I was handed a list of forty or fifty key words… topics to be included in the narrative. We agreed that we would meet again to consider content more fully. Despite several requests… that was the last meeting I had on this subject and the project dissolved.

In the month or so before it became clear that there was no real interest in the project I struggled to figure out how to tell a story about HANA that would be compelling… rather than make the book a list of technical features. The story in the video, with the HANA ending that I will post next, was to be the story that opened the book.

How DBMS Vendors Admit to an Architectural Limitation: Part 2 – Teradata Intelligent Memory

This is the second post (see Part 1 here) on how vendors adjust their architecture without admitting that the previous architecture was flawed. This time we’ll consider Teradata and in-memory….

When SAP HANA appeared Teradata went on the warpath with a series of posts and statements that were pointed but oddly miscued (see the references below). According to the posts in-memory was unnecessary and SAP was on a misguided journey.

Then Teradata announced Intelligent Memory and in-memory was cool. This is pretty close to an admission that SAP was right and Teradata was wrong. The numbers which drove Teradata here are compelling… 100K-200K ns to access an SSD device or 100 ns to access DRAM… a 1000X reduction… and the latency to disk is 100X worse than SSD.

Intelligent Memory was announced shortly after the release of Teradata’s columnar table type. Column-orientation is important because you need a powerful approach to compression to effectively use an expensive memory resource… and columnar provides this. But Teradata, like Greenplum, extended a row-based engine to support columns in order to get to market quick… they hoped to get 80% of the effectiveness of in-memory with only 20% of the engineering effort. The other 20% comes when you develop a new engine that fully exploits the advantages of a columnar architecture. These advanced exploits allow HANA, DB2 BLU, and Oracle 12c to execute directly on columnar data thereby avoiding decompression, fully utilizing the processor caches, and allowing sets to be operated on by super-computing vector-processing instructions. In fact, Teradata really applied the 50/20 rule… they gained 50%, maybe only 40%, of the benefits with their columnar and Intelligent Memory features… but it was easy to deploy what is in-effect an in-memory cache over their existing relational engine.

Please don’t jump to the wrong conclusion here… Intelligent Memory is a strong product. If you were to put hot data in memory, cool data in Teradata-on-SSD-or-Disk, and cold data in Hadoop and manage them as one EDW you could deploy a very cost-effective platform (see here).

Still, Teradata with Intelligent Memory is not likely to compete effectively against HANA, BLU, or 12c for raw performance… so there will be some marketing foam attached and an appeal for Teradata shops to avoid database apostasy and stick with them. You can see some of the foam in the articles below.

A quick aside here… generally a DBMS should win or lose based on price/performance. The ANSI standard makes a products features nearly, not completely but nearly, irrelevant. If you cannot win on price/performance then you blow foam. When any vendor starts talking about things like TCO you should grab your wallets… it is an appeal to foaminess to hide a weakness. I’m not calling out Teradata here… this is general warning that applies to every software vendor.

Intelligent Memory is a smart move. While it may not win in a head-to-head POC… it will be close-ish… close enough to keep the congregation in their pews. As readers know, I am not a big fan of technical religiosity… being a “Teradata-shop” is lazy… engineers we should pick the best solution and learn it. The tiered approach mentioned three paragraphs up is a good solution and non-Teradata shops should be considering it… but Teradata shops should be open to new technology as well. Still, we should pick new technology with a sensitivity to the cost of a migration… and in many cases Intelligent Memory will save business for Teradata by getting just close enough to make migration a bad trade-off. This is why it was so smart.

Back to the theme of these posts… Teradata back-tracked on the value of in-memory… and in the process admitted-without-admitting a shortcoming in their architecture. So it goes…

Next we will consider whether you should be building data warehouses on z/OS using DB2 or the DB2 Analytics Accelerator aka Netezza.

References

Database Fog Blog

Other